2D Metals

2D Metals
Author :
Publisher : CRC Press
Total Pages : 312
Release :
ISBN-10 : 9781040151327
ISBN-13 : 1040151329
Rating : 4/5 (27 Downloads)

Synopsis 2D Metals by : Ram Gupta

2D Metals: Fundamentals, Emerging Applications, and Challenges delves into the state-of- the-art advancements in utilizing 2D metals for emerging applications, encompassing a comprehensive overview of synthetic methodologies and characterization techniques provided by leading experts in the field. 2D nanomaterials have emerged as highly promising candidates for a diverse array of cutting-edge applications, spanning energy and biomedicine, owing to their adjustable electrochemical properties, versatility, and exceptional mechanical resilience. Notably, carbon-based 2D materials have already demonstrated extensive utility across various domains. Meanwhile, 2D metals, often referred to as Metallenes, represent a burgeoning class of materials with broad reaching potential. In contrast to alternative 2D materials like graphene and transition metal chalcogenides, as well as bulk metals, 2D metals exhibit remarkable conductivity, expansive surface area, and customizable electronic and optoelectronic characteristics. This book explores the influence of structural modifications on the properties of 2D metals and addresses the myriad challenges associated with their burgeoning applications. Each chapter, authored by esteemed specialists from across the globe, offers invaluable insights, rendering this book an indispensable resource for students while furnishing researchers and industry professionals with novel guidance and perspectives.

2D Materials

2D Materials
Author :
Publisher : Cambridge University Press
Total Pages : 521
Release :
ISBN-10 : 9781316738139
ISBN-13 : 1316738132
Rating : 4/5 (39 Downloads)

Synopsis 2D Materials by : Phaedon Avouris

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Fundamentals and Sensing Applications of 2D Materials

Fundamentals and Sensing Applications of 2D Materials
Author :
Publisher : Woodhead Publishing
Total Pages : 514
Release :
ISBN-10 : 9780081025789
ISBN-13 : 0081025785
Rating : 4/5 (89 Downloads)

Synopsis Fundamentals and Sensing Applications of 2D Materials by : Chandra Sekhar Rout

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. - Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system - Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more - Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices

Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices
Author :
Publisher : CRC Press
Total Pages : 221
Release :
ISBN-10 : 9781040103616
ISBN-13 : 1040103618
Rating : 4/5 (16 Downloads)

Synopsis Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices by : Srikanth Ponnada

Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices provides a detailed overview of advances and challenges in the development of 2D materials for use in energy storage devices. It offers deep insight into the synthesis, characterization, and application of different 2D materials and their heterostructures in a variety of energy storage devices, focusing on new phenomena and enhanced electrochemistry. This book: Introduces 2D materials, synthesis methods, and characterization techniques Discusses application in a wide range of batteries and supercapacitors Offers perspectives on future investigations necessary to overcome existing challenges This comprehensive reference is written to guide researchers and engineers working to advance the technology of energy-efficient energy storage devices.

Atomic and electronic structures of two-dimensional layers on noble metals

Atomic and electronic structures of two-dimensional layers on noble metals
Author :
Publisher : Linköping University Electronic Press
Total Pages : 67
Release :
ISBN-10 : 9789176850480
ISBN-13 : 917685048X
Rating : 4/5 (80 Downloads)

Synopsis Atomic and electronic structures of two-dimensional layers on noble metals by : Jalil Shah

Two-dimensional (2D) materials, in the form of a single atomic layer with a crystalline structure, are of interest for electronic applications. Such materials can be formed by a single element, e.g., by group IV or group V elements, or as a 2D surface alloy. As these materials consist of just a single atomic layer, they may have unique properties that are not present in the bulk. The (111) surfaces of the noble metals Ag and Au are important for the preparation of several 2D materials. To investigate the atomic and electronic structures, the following experimental techniques were used in this thesis: angle resolved photoelectron spectroscopy (ARPES), scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The 2D structures studied in this thesis include arsenene (an As analogue to graphene) and As/Ag(111), Sn/Au(111), and Te/Ag(111) surface alloys. Arsenene has been thoroughly investigated theoretically for many years and several interesting properties important for next generation electronic and optoelectronic devices have been described in the literature. This thesis presents the first experimental evidence of the formation of arsenene. A clean Ag(111) surface was exposed to arsenic in an ultra-high vacuum chamber at an elevated substrate temperature (250 to 350 °C ). The resulting arsenic layer was studied by LEED, STM and ARPES. Both LEED and STM data resulted in a lattice constant of the arsenic layer of 3.6 Å which is consistent with the formation of arsenene. A comparison between the experimental band structure obtained by ARPES and the theoretical band structure of arsenene based on density functional theory (DFT), further verified the formation of arsenene. The As/Ag(111) surface alloy was prepared by exposing clean Ag(111) to arsenic followed by heating to 400 °C. This resulted in an Ag2As surface alloy which formed by the replacement of every third Ag atom by an As atom in a periodic fashion. LEED showed a complex pattern of diffraction spots corresponding to a superposition of three domains of a reconstruction described by a unit cell. STM images revealed a surface with a striped atomic structure with ridges characterized by a local ?3 × ?3 structure. ARPES data showed three alloy related bands of which one can be associated with the ?3 × ?3 structure on the ridges. This band shows a split in momentum space around the point along the direction of a ?3 × ?3 surface Brillouin zone in similarity with a Ge/Ag(111) surface alloy. Sn/Au(111) surface alloys can be prepared with different periodicities. An Au2Sn phase characterized by a ?3 × ?3 periodicity and an Au3Sn phase with a 2 × 2 periodicity are formed containing 0.33 and 0.25 monolayer of Sn, respectively. The clean Au(111) surface itself, shows a complex reconstruction, the so called herringbone structure, that can be viewed as a zig-zag pattern of stripes described by a 22 × ?3 unit cell. The replacement of Au atoms by Sn results in change of the periodicity of the herringbone structure to 26 × ?3 and ? 26 × 2?3 for the Au2Sn and Au3Sn surface alloys, respectively. Furthermore, the local 1 × 1 periodicity of clean Au(111) is replaced by a ?3 × ?3 and a 2 × 2 periodicity as is clear from STM images of the respective cases. ARPES data are presented for the Au2Sn surface alloy, which reveal an electronic band structure with similarities to other striped surface alloys. In particular, the split in momentum space around the point of a ?3 × ?3 surface Brillouin zone is observed also for Au2Sn. A Te-Ag binary surface alloy can be formed by evaporating 1/3 monolayer of Te onto a clean Ag(111) surface followed by annealing. After this preparation, LEED showed sharp ?3 × ?3 diffraction spots that is evidence for a well-ordered surface layer. ARPES data revealed two distinct electronic bands that followed the ?3 × ?3 periodicity. One of these bands showed a small spin-split of the Rashba type. The experimental band structure was compared with the theoretical bands of several atomic models of Te induced structures on Ag(111). An excellent fit was obtained for a Te-Ag surface alloy with a planar honeycomb structure, with one Te and one Ag atom in the unit cell. A semiconducting electronic structure of the Te-Ag surface alloy was inferred from the ARPES data in agreement with the ?0.7 eV band gap predicted by the DFT calculations.

Two-Dimensional Transition-Metal Dichalcogenides

Two-Dimensional Transition-Metal Dichalcogenides
Author :
Publisher : Springer
Total Pages : 545
Release :
ISBN-10 : 9783319314501
ISBN-13 : 3319314505
Rating : 4/5 (01 Downloads)

Synopsis Two-Dimensional Transition-Metal Dichalcogenides by : Alexander V. Kolobov

This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

2d Inorganic Materials Beyond Graphene

2d Inorganic Materials Beyond Graphene
Author :
Publisher : World Scientific
Total Pages : 474
Release :
ISBN-10 : 9781786342713
ISBN-13 : 1786342715
Rating : 4/5 (13 Downloads)

Synopsis 2d Inorganic Materials Beyond Graphene by : C N R Rao

Two-dimensional materials have had widespread applications in nanoelectronics, catalysis, gas capture, water purification, energy storage and conversion. Initially based around graphene, research has since moved on to looking at alternatives, including transitions metal dichalcogenides, layered topological insulators, metallic mono-chalcogenides, borocarbonitrides and phosphorene.This book provides a review of research in the field of these materials, including investigation into their defects, analysis on hybrid structures focusing on their properties and synthesis, and characterization and applications of 2D materials beyond graphene. It is designed to be a single-point reference for students, teachers and researchers of chemistry and its related subjects, particularly in the field of nanomaterials.

Emerging Two Dimensional Materials and Applications

Emerging Two Dimensional Materials and Applications
Author :
Publisher : CRC Press
Total Pages : 260
Release :
ISBN-10 : 9781000783001
ISBN-13 : 1000783006
Rating : 4/5 (01 Downloads)

Synopsis Emerging Two Dimensional Materials and Applications by : Arun Kumar Singh

This book details 2D nanomaterials, and their important applications—including recent developments and related scalable technologies crucial to addressing strong societal demands of energy, environmental protection, and worldwide health concerns—are systematically documented. It covers syntheses and structures of various 2D materials, electrical transport in graphene, and different properties in detail. Applications in important areas of energy harvesting, energy storage, environmental monitoring, and biosensing and health care are elaborated. Features: Facilitates good understanding of concepts of emerging 2D materials and its applications. Covers details of highly sensitive sensors using 2D materials for environmental monitoring. Outlines the role of 2D materials in improvement of energy harvesting and storage. Details application in biosensing and health care for the realization of next-generation biotechnologies for personalized health monitoring and so forth. Provides exclusive coverage of inorganic 2D MXenes compounds. This book is aimed at graduate students and researchers in materials science and engineering, nanoscience and nanotechnology, and electrical engineering.

Fundamentals and Supercapacitor Applications of 2D Materials

Fundamentals and Supercapacitor Applications of 2D Materials
Author :
Publisher : Elsevier
Total Pages : 414
Release :
ISBN-10 : 9780128219935
ISBN-13 : 0128219939
Rating : 4/5 (35 Downloads)

Synopsis Fundamentals and Supercapacitor Applications of 2D Materials by : Chandra Sekhar Rout

Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. Explores recent developments and looks at the importance of 2D materials in energy storage technologies Presents both the theoretical and DFT related studies Discusses the impact on performance of various operating conditions Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive

Liquid Metals

Liquid Metals
Author :
Publisher : John Wiley & Sons
Total Pages : 436
Release :
ISBN-10 : 9783527828791
ISBN-13 : 3527828796
Rating : 4/5 (91 Downloads)

Synopsis Liquid Metals by : Lei Fu

An up-to-date exploration of the properties and most recent applications of liquid metals In Liquid Metal: Properties, Mechanisms, and Applications, a pair of distinguished researchers delivers a comprehensive exploration of liquid metals with a strong focus on their structure and physicochemical properties, preparation methods, and tuning strategies. The book also illustrates the applications of liquid metals in fields as varied as mediated synthesis, 3D printing, flexible electronics, biomedicine, energy storage, and energy conversion. The authors include coverage of reactive mediums for synthesizing and assembling nanomaterials and direct-writing electronics, and the book offers access to supplementary video materials to highlight the concepts discussed within. Recent advancements in the field of liquid metals are also discussed, as are new opportunities for research and development in this rapidly developing area. The book also includes: A thorough introduction to the fundamentals of liquid metal, including a history of its discovery, its structure and physical properties, and its preparation Comprehensive explorations of the external field tuning of liquid metal, including electrical, magnetic, and chemical tuning Practical discussions of liquid metal as a new reaction medium, including nanomaterial synthesis and alloy preparation In-depth examinations of constructing techniques of liquid metal-based architectures, including injection, imprinting, and mask-assisted depositing Perfect for materials scientists, electrochemists, and catalytic chemists, Liquid Metal: Properties, Mechanisms, and Applications also belongs in the libraries of inorganic chemists, electronics engineers, and biochemists.