Wide Bandgap Semiconductor Based Micro/Nano Devices

Wide Bandgap Semiconductor Based Micro/Nano Devices
Author :
Publisher : MDPI
Total Pages : 138
Release :
ISBN-10 : 9783038978428
ISBN-13 : 3038978426
Rating : 4/5 (28 Downloads)

Synopsis Wide Bandgap Semiconductor Based Micro/Nano Devices by : Jung-Hun Seo

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Wide Bandgap Semiconductor Based Micro/Nano Devices

Wide Bandgap Semiconductor Based Micro/Nano Devices
Author :
Publisher :
Total Pages : 138
Release :
ISBN-10 : 3038978434
ISBN-13 : 9783038978435
Rating : 4/5 (34 Downloads)

Synopsis Wide Bandgap Semiconductor Based Micro/Nano Devices by : Jung-Hun Seo

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Wide Bandgap Semiconductor-based Electronics

Wide Bandgap Semiconductor-based Electronics
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 0750325151
ISBN-13 : 9780750325158
Rating : 4/5 (51 Downloads)

Synopsis Wide Bandgap Semiconductor-based Electronics by : F. Ren

Advances in wide bandgap semiconductor materials are enabling the development of a new generation of power semiconductor devices that far exceed the performance of silicon-based devices. These technologies offer potential breakthrough performance for a wide range of applications, including high-power and RF electronics, deep-UV optoelectronics, quantum information and extreme-environment applications. This reference text provides comprehensive coverage of the challenges and latest research in wide and ultra-wide bandgap semiconductors. Leading researchers from around the world provide reviews on the latest development of materials and devices in these systems. The book is an essential reference for researchers and practitioners in the field of wide bandgap semiconductors and power electronics, and valuable supplementary reading for advanced courses in these areas.

Wide Energy Bandgap Electronic Devices

Wide Energy Bandgap Electronic Devices
Author :
Publisher : World Scientific
Total Pages : 526
Release :
ISBN-10 : 9789812382467
ISBN-13 : 9812382461
Rating : 4/5 (67 Downloads)

Synopsis Wide Energy Bandgap Electronic Devices by : Fan Ren

Presents state-of-the-art GaN and SiC electronic devices, as well as detailed applications of these devices to power conditioning, r. f. base station infrastructure and high temperature electronics.

Vacuum Nanoelectronic Devices

Vacuum Nanoelectronic Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 472
Release :
ISBN-10 : 9781119037965
ISBN-13 : 1119037964
Rating : 4/5 (65 Downloads)

Synopsis Vacuum Nanoelectronic Devices by : Anatoliy Evtukh

Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments. This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: • In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. • Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. • Unique coverage of quantum physical results for electron-field emission and novel electron sources with quantum effects, relevant for many applications such as electron microscopy, electron lithography, imaging and communication systems and signal processing. • New approaches for realization of electron sources with required and optimal parameters in electronic devices such as vacuum micro and nanoelectronics. This is an essential reference for researchers working in terahertz technology wanting to expand their knowledge of electron beam generation in vacuum and electron source quantum concepts. It is also valuable to advanced students in electronics engineering and physics who want to deepen their understanding of this topic. Ultimately, the progress of the quantum nanostructure theory and technology will promote the progress and development of electron sources as main part of vacuum macro-, micro- and nanoelectronics.

Wide Bandgap Based Devices

Wide Bandgap Based Devices
Author :
Publisher : MDPI
Total Pages : 242
Release :
ISBN-10 : 9783036505664
ISBN-13 : 3036505660
Rating : 4/5 (64 Downloads)

Synopsis Wide Bandgap Based Devices by : Farid Medjdoub

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Semiconductor Nanostructures for Optoelectronic Devices

Semiconductor Nanostructures for Optoelectronic Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 347
Release :
ISBN-10 : 9783642224805
ISBN-13 : 3642224806
Rating : 4/5 (05 Downloads)

Synopsis Semiconductor Nanostructures for Optoelectronic Devices by : Gyu-Chul Yi

This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.

Harsh Environment Electronics

Harsh Environment Electronics
Author :
Publisher : John Wiley & Sons
Total Pages : 398
Release :
ISBN-10 : 9783527344192
ISBN-13 : 3527344195
Rating : 4/5 (92 Downloads)

Synopsis Harsh Environment Electronics by : Ahmed Sharif

Provides in-depth knowledge on novel materials that make electronics work under high-temperature and high-pressure conditions This book reviews the state of the art in research and development of lead-free interconnect materials for electronic packaging technology. It identifies the technical barriers to the development and manufacture of high-temperature interconnect materials to investigate into the complexities introduced by harsh conditions. It teaches the techniques adopted and the possible alternatives of interconnect materials to cope with the impacts of extreme temperatures for implementing at industrial scale. The book also examines the application of nanomaterials, current trends within the topic area, and the potential environmental impacts of material usage. Written by world-renowned experts from academia and industry, Harsh Environment Electronics: Interconnect Materials and Performance Assessment covers interconnect materials based on silver, gold, and zinc alloys as well as advanced approaches utilizing polymers and nanomaterials in the first section. The second part is devoted to the performance assessment of the different interconnect materials and their respective environmental impact. -Takes a scientific approach to analyzing and addressing the issues related to interconnect materials involved in high temperature electronics -Reviews all relevant materials used in interconnect technology as well as alternative approaches otherwise neglected in other literature -Highlights emergent research and theoretical concepts in the implementation of different materials in soldering and die-attach applications -Covers wide-bandgap semiconductor device technologies for high temperature and harsh environment applications, transient liquid phase bonding, glass frit based die attach solution for harsh environment, and more -A pivotal reference for professionals, engineers, students, and researchers Harsh Environment Electronics: Interconnect Materials and Performance Assessment is aimed at materials scientists, electrical engineers, and semiconductor physicists, and treats this specialized topic with breadth and depth.

Nanoelectronic Materials, Devices and Modeling

Nanoelectronic Materials, Devices and Modeling
Author :
Publisher : MDPI
Total Pages : 242
Release :
ISBN-10 : 9783039212255
ISBN-13 : 3039212257
Rating : 4/5 (55 Downloads)

Synopsis Nanoelectronic Materials, Devices and Modeling by : Qiliang Li

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.

Advances in Nanodevices and Nanofabrication

Advances in Nanodevices and Nanofabrication
Author :
Publisher : CRC Press
Total Pages : 298
Release :
ISBN-10 : 9789814364553
ISBN-13 : 981436455X
Rating : 4/5 (53 Downloads)

Synopsis Advances in Nanodevices and Nanofabrication by : Qing Zhang

A variety of devices at nanometer/molecular scale for electronic, photonic, optoelectronic, biological, and mechanical applications have been created through the rapid development of materials and fabrication technology. Further development of nanodevices strongly depends on the state-of-the-art knowledge of science and technology at the sub-100 nm