Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 478
Release :
ISBN-10 : 9783540312727
ISBN-13 : 3540312722
Rating : 4/5 (27 Downloads)

Synopsis Visualization and Processing of Tensor Fields by : Joachim Weickert

Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.

Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 379
Release :
ISBN-10 : 9783540883784
ISBN-13 : 3540883789
Rating : 4/5 (84 Downloads)

Synopsis Visualization and Processing of Tensor Fields by : David H. Laidlaw

This book provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. With numerous color figures, it details both the underlying mathematics and the applications of tensor fields.

Anisotropy Across Fields and Scales

Anisotropy Across Fields and Scales
Author :
Publisher : Springer Nature
Total Pages : 284
Release :
ISBN-10 : 9783030562151
ISBN-13 : 3030562158
Rating : 4/5 (51 Downloads)

Synopsis Anisotropy Across Fields and Scales by : Evren Özarslan

This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.

New Developments in the Visualization and Processing of Tensor Fields

New Developments in the Visualization and Processing of Tensor Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 389
Release :
ISBN-10 : 9783642273421
ISBN-13 : 3642273424
Rating : 4/5 (21 Downloads)

Synopsis New Developments in the Visualization and Processing of Tensor Fields by : David H. Laidlaw

Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.

Tensors in Image Processing and Computer Vision

Tensors in Image Processing and Computer Vision
Author :
Publisher : Springer Science & Business Media
Total Pages : 468
Release :
ISBN-10 : 9781848822993
ISBN-13 : 1848822995
Rating : 4/5 (93 Downloads)

Synopsis Tensors in Image Processing and Computer Vision by : Santiago Aja-Fernández

Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.

Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data

Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data
Author :
Publisher : Springer
Total Pages : 346
Release :
ISBN-10 : 9783642543012
ISBN-13 : 3642543014
Rating : 4/5 (12 Downloads)

Synopsis Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data by : Carl-Fredrik Westin

Arising from the fourth Dagstuhl conference entitled Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (2011), this book offers a broad and vivid view of current work in this emerging field. Topics covered range from applications of the analysis of tensor fields to research on their mathematical and analytical properties. Part I, Tensor Data Visualization, surveys techniques for visualization of tensors and tensor fields in engineering, discusses the current state of the art and challenges, and examines tensor invariants and glyph design, including an overview of common glyphs. The second Part, Representation and Processing of Higher-order Descriptors, describes a matrix representation of local phase, outlines mathematical morphological operations techniques, extended for use in vector images, and generalizes erosion to the space of diffusion weighted MRI. Part III, Higher Order Tensors and Riemannian-Finsler Geometry, offers powerful mathematical language to model and analyze large and complex diffusion data such as High Angular Resolution Diffusion Imaging (HARDI) and Diffusion Kurtosis Imaging (DKI). A Part entitled Tensor Signal Processing presents new methods for processing tensor-valued data, including a novel perspective on performing voxel-wise morphometry of diffusion tensor data using kernel-based approach, explores the free-water diffusion model, and reviews proposed approaches for computing fabric tensors, emphasizing trabecular bone research. The last Part, Applications of Tensor Processing, discusses metric and curvature tensors, two of the most studied tensors in geometry processing. Also covered is a technique for diagnostic prediction of first-episode schizophrenia patients based on brain diffusion MRI data. The last chapter presents an interactive system integrating the visual analysis of diffusion MRI tractography with data from electroencephalography.

Modeling, Analysis, and Visualization of Anisotropy

Modeling, Analysis, and Visualization of Anisotropy
Author :
Publisher : Springer
Total Pages : 406
Release :
ISBN-10 : 9783319613581
ISBN-13 : 3319613588
Rating : 4/5 (81 Downloads)

Synopsis Modeling, Analysis, and Visualization of Anisotropy by : Thomas Schultz

This book focuses on the modeling, processing and visualization of anisotropy, irrespective of the context in which it emerges, using state-of-the-art mathematical tools. As such, it differs substantially from conventional reference works, which are centered on a particular application. It covers the following topics: (i) the geometric structure of tensors, (ii) statistical methods for tensor field processing, (iii) challenges in mapping neural connectivity and structural mechanics, (iv) processing of uncertainty, and (v) visualizing higher-order representations. In addition to original research contributions, it provides insightful reviews. This multidisciplinary book is the sixth in a series that aims to foster scientific exchange between communities employing tensors and other higher-order representations of directionally dependent data. A significant number of the chapters were co-authored by the participants of the workshop titled Multidisciplinary Approaches to Multivalued Data: Modeling, Visualization, Analysis, which was held in Dagstuhl, Germany in April 2016. It offers a valuable resource for those working in the field of multi-directional data, vital inspirations for the development of new models, and essential analysis and visualization techniques, thus furthering the state-of-the-art in studies involving anisotropy.

Data Visualization

Data Visualization
Author :
Publisher : CRC Press
Total Pages : 619
Release :
ISBN-10 : 9781466585263
ISBN-13 : 1466585269
Rating : 4/5 (63 Downloads)

Synopsis Data Visualization by : Alexandru C. Telea

Designing a complete visualization system involves many subtle decisions. When designing a complex, real-world visualization system, such decisions involve many types of constraints, such as performance, platform (in)dependence, available programming languages and styles, user-interface toolkits, input/output data format constraints, integration with third-party code, and more. Focusing on those techniques and methods with the broadest applicability across fields, the second edition of Data Visualization: Principles and Practice provides a streamlined introduction to various visualization techniques. The book illustrates a wide variety of applications of data visualizations, illustrating the range of problems that can be tackled by such methods, and emphasizes the strong connections between visualization and related disciplines such as imaging and computer graphics. It covers a wide range of sub-topics in data visualization: data representation; visualization of scalar, vector, tensor, and volumetric data; image processing and domain modeling techniques; and information visualization. See What’s New in the Second Edition: Additional visualization algorithms and techniques New examples of combined techniques for diffusion tensor imaging (DTI) visualization, illustrative fiber track rendering, and fiber bundling techniques Additional techniques for point-cloud reconstruction Additional advanced image segmentation algorithms Several important software systems and libraries Algorithmic and software design issues are illustrated throughout by (pseudo)code fragments written in the C++ programming language. Exercises covering the topics discussed in the book, as well as datasets and source code, are also provided as additional online resources.

New Insights on Multidimensional Image and Tensor Field Segmentation

New Insights on Multidimensional Image and Tensor Field Segmentation
Author :
Publisher : Presses univ. de Louvain
Total Pages : 250
Release :
ISBN-10 : 2874630926
ISBN-13 : 9782874630927
Rating : 4/5 (26 Downloads)

Synopsis New Insights on Multidimensional Image and Tensor Field Segmentation by : Rodrigo De Louis García

Extracting knowledge from images through feature extraction is a topic of paramount importance for the Image Processing and Computer Vision communities. Within this general objective, this thesis focuses on the combination of the intensity and texture information, encoded by means of the local structure tensor (LST), for the segmentation of images. The LST is a well-stablished tool for the representation of oriented textures, and its incorporation to the segmentation process has reported to improve the segmentation performance. However, its combined use with the intensity is a complex issue that must be tackled carefully. This dissertation explores various alternatives to achieve this combination, and besides studies the problem of the balance of both sources of information. Within a level set framework, the segmentation is first performed in the tensor domain based on the definition of novel LST tensor variants that incorporate intensity information. A different approach is also considered based on a common energy minimization framework that allows the usage of both the insensity and the LST respecting their most adequate representation forms and suitable metrics. Besides, an adaptive procedure for the determination of the weighting parameters is proposed that takes into account the respective discriminant power of both features. The segmentation of tensor fields is also addressed in this dissertation. In this direction, an extension to the state-of-the-art approaches for the segmentation of tensor data has been derived which is based on the modeling of tensor data using mixtures of Gaussians. The application of this scheme can be devoted to the combined use of the intensity and texture as introduced before, as well as for the stand-alone segmentation of tensor fields. The methods proposed in this dissertation are applied to three medical image applications. The first two are performed using both the intensity and the LST in a combined approach as proposed in this thesis. Specifically, the segmentation of hand bones from radiographs is first addressed, related to the problem of the automated determination of the skeletal age in children. Next, the endocardium of the left ventricle is extractred from 3D+T cardiac MRI images. The third application is devoted to the segmentation of the corpus callosum from diffusion tensor MRI, and is thus an application of the Gaussian mixtures model for tensor field segmentation.

Visualization and Processing of Higher Order Descriptors for Multi-Valued Data

Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
Author :
Publisher : Springer
Total Pages : 378
Release :
ISBN-10 : 9783319150901
ISBN-13 : 3319150901
Rating : 4/5 (01 Downloads)

Synopsis Visualization and Processing of Higher Order Descriptors for Multi-Valued Data by : Ingrid Hotz

Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. This book will appeal to scientists who are working to develop new analysis methods in the areas of image processing and visualization, as well as those who work with applications that generate higher-order data or could benefit from higher-order models and are searching for novel analytical tools.