Time Series Analysis and Its Applications

Time Series Analysis and Its Applications
Author :
Publisher :
Total Pages : 568
Release :
ISBN-10 : 1475732627
ISBN-13 : 9781475732627
Rating : 4/5 (27 Downloads)

Synopsis Time Series Analysis and Its Applications by : Robert H. Shumway

Time Series Analysis

Time Series Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 501
Release :
ISBN-10 : 9780387759586
ISBN-13 : 0387759581
Rating : 4/5 (86 Downloads)

Synopsis Time Series Analysis by : Jonathan D. Cryer

This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Multivariate Time Series Analysis and Applications

Multivariate Time Series Analysis and Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 536
Release :
ISBN-10 : 9781119502852
ISBN-13 : 1119502853
Rating : 4/5 (52 Downloads)

Synopsis Multivariate Time Series Analysis and Applications by : William W. S. Wei

An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.

Time Series Analysis, Modeling and Applications

Time Series Analysis, Modeling and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 398
Release :
ISBN-10 : 9783642334399
ISBN-13 : 3642334393
Rating : 4/5 (99 Downloads)

Synopsis Time Series Analysis, Modeling and Applications by : Witold Pedrycz

Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological and algorithmic approaches and case studies. This volume is aimed at a broad audience of researchers and practitioners engaged in various branches of operations research, management, social sciences, engineering, and economics. Owing to the nature of the material being covered and a way it has been arranged, it establishes a comprehensive and timely picture of the ongoing pursuits in the area and fosters further developments.

Theory and Applications of Time Series Analysis

Theory and Applications of Time Series Analysis
Author :
Publisher : Springer Nature
Total Pages : 460
Release :
ISBN-10 : 9783030562199
ISBN-13 : 3030562190
Rating : 4/5 (99 Downloads)

Synopsis Theory and Applications of Time Series Analysis by : Olga Valenzuela

This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.

Handbook of Time Series Analysis

Handbook of Time Series Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 514
Release :
ISBN-10 : 9783527609512
ISBN-13 : 3527609512
Rating : 4/5 (12 Downloads)

Synopsis Handbook of Time Series Analysis by : Björn Schelter

This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.

Applied Time Series Analysis

Applied Time Series Analysis
Author :
Publisher : Academic Press
Total Pages : 354
Release :
ISBN-10 : 9780128131176
ISBN-13 : 0128131179
Rating : 4/5 (76 Downloads)

Synopsis Applied Time Series Analysis by : Terence C. Mills

Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications
Author :
Publisher : Elsevier
Total Pages : 778
Release :
ISBN-10 : 9780444538581
ISBN-13 : 0444538585
Rating : 4/5 (81 Downloads)

Synopsis Time Series Analysis: Methods and Applications by : Tata Subba Rao

'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Time Series Analysis and Applications

Time Series Analysis and Applications
Author :
Publisher : IntechOpen
Total Pages : 182
Release :
ISBN-10 : 9789535137429
ISBN-13 : 9535137425
Rating : 4/5 (29 Downloads)

Synopsis Time Series Analysis and Applications by : Nawaz Mohamudally

Time Series Analysis (TSA) and Applications offers a dense content of current research and development in the field of data science. The book presents time series from a multidisciplinary approach that covers a wide range of sectors ranging from biostatistics to renewable energy forecasting. Contrary to previous literatures on time, serious readers will discover the potential of TSA in areas other than finance or weather forecasting. The choice of the algorithmic transform for different scenarios, which is a key determinant in the application of TSA, can be understood through the diverse domain applications. Readers looking for deep understanding and practicability of TSA will be delighted. Early career researchers too will appreciate the technicalities and refined mathematical complexities surrounding TSA. Our wish is that this book adds to the body of TSA knowledge and opens up avenues for those who are looking forward to applying TSA in their own context.

Time-Series Prediction and Applications

Time-Series Prediction and Applications
Author :
Publisher : Springer
Total Pages : 255
Release :
ISBN-10 : 9783319545974
ISBN-13 : 3319545973
Rating : 4/5 (74 Downloads)

Synopsis Time-Series Prediction and Applications by : Amit Konar

This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers’ ability and understanding of the topics covered.