Time Parallel Time Integration
Download Time Parallel Time Integration full books in PDF, epub, and Kindle. Read online free Time Parallel Time Integration ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Benjamin Ong |
Publisher |
: Springer Nature |
Total Pages |
: 134 |
Release |
: 2021-08-24 |
ISBN-10 |
: 9783030759339 |
ISBN-13 |
: 3030759334 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Parallel-in-Time Integration Methods by : Benjamin Ong
This volume includes contributions from the 9th Parallel-in-Time (PinT) workshop, an annual gathering devoted to the field of time-parallel methods, aiming to adapt existing computer models to next-generation machines by adding a new dimension of scalability. As the latest supercomputers advance in microprocessing ability, they require new mathematical algorithms in order to fully realize their potential for complex systems. The use of parallel-in-time methods will provide dramatically faster simulations in many important areas, including biomedical (e.g., heart modeling), computational fluid dynamics (e.g., aerodynamics and weather prediction), and machine learning applications. Computational and applied mathematics is crucial to this progress, as it requires advanced methodologies from the theory of partial differential equations in a functional analytic setting, numerical discretization and integration, convergence analyses of iterative methods, and the development and implementation of new parallel algorithms. Therefore, the workshop seeks to bring together an interdisciplinary group of experts across these fields to disseminate cutting-edge research and facilitate discussions on parallel time integration methods.
Author |
: Martin J. Gander |
Publisher |
: SIAM |
Total Pages |
: 273 |
Release |
: 2024-10-15 |
ISBN-10 |
: 9781611978025 |
ISBN-13 |
: 1611978025 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Time Parallel Time Integration by : Martin J. Gander
Predicting the future is a difficult task but, as with the weather, it is possible with good models. But how does one predict the far future before the near future is known? Time parallel time integration, also known as PinT (Parallel-in-Time) methods, aims to predict the near and far future simultaneously. In this self-contained book, the first on the topic, readers will find a comprehensive and up-to-date description of methods and techniques that have been developed to do just this. The authors describe the four main classes of PinT methods: shooting-type methods, waveform relaxation methods, time parallel multigrid methods, and direct time parallel methods. In addition, they provide historical background for each of the method classes, complete convergence analyses for the most representative variants of the methods in each class, and illustrations and runnable MATLAB code. An ideal introduction to this exciting and very active research field, Time Parallel Time Integration can be used for independent study or for a graduate course.
Author |
: Ralf Kornhuber |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 686 |
Release |
: 2006-03-30 |
ISBN-10 |
: 9783540268253 |
ISBN-13 |
: 3540268251 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Domain Decomposition Methods in Science and Engineering by : Ralf Kornhuber
Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.
Author |
: Randall J. LeVeque |
Publisher |
: SIAM |
Total Pages |
: 356 |
Release |
: 2007-01-01 |
ISBN-10 |
: 0898717833 |
ISBN-13 |
: 9780898717839 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author |
: Wulfram Gerstner |
Publisher |
: Cambridge University Press |
Total Pages |
: 591 |
Release |
: 2014-07-24 |
ISBN-10 |
: 9781107060838 |
ISBN-13 |
: 1107060834 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Neuronal Dynamics by : Wulfram Gerstner
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Author |
: George Em Karniadakis |
Publisher |
: Cambridge University Press |
Total Pages |
: 640 |
Release |
: 2003-06-16 |
ISBN-10 |
: 9781107494770 |
ISBN-13 |
: 110749477X |
Rating |
: 4/5 (70 Downloads) |
Synopsis Parallel Scientific Computing in C++ and MPI by : George Em Karniadakis
Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Author |
: Michael A. Heroux |
Publisher |
: SIAM |
Total Pages |
: 421 |
Release |
: 2006-01-01 |
ISBN-10 |
: 0898718139 |
ISBN-13 |
: 9780898718133 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Parallel Processing for Scientific Computing by : Michael A. Heroux
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
Author |
: I. Foster |
Publisher |
: IOS Press |
Total Pages |
: 806 |
Release |
: 2020-03-25 |
ISBN-10 |
: 9781643680712 |
ISBN-13 |
: 1643680714 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Parallel Computing: Technology Trends by : I. Foster
The year 2019 marked four decades of cluster computing, a history that began in 1979 when the first cluster systems using Components Off The Shelf (COTS) became operational. This achievement resulted in a rapidly growing interest in affordable parallel computing for solving compute intensive and large scale problems. It also directly lead to the founding of the Parco conference series. Starting in 1983, the International Conference on Parallel Computing, ParCo, has long been a leading venue for discussions of important developments, applications, and future trends in cluster computing, parallel computing, and high-performance computing. ParCo2019, held in Prague, Czech Republic, from 10 – 13 September 2019, was no exception. Its papers, invited talks, and specialized mini-symposia addressed cutting-edge topics in computer architectures, programming methods for specialized devices such as field programmable gate arrays (FPGAs) and graphical processing units (GPUs), innovative applications of parallel computers, approaches to reproducibility in parallel computations, and other relevant areas. This book presents the proceedings of ParCo2019, with the goal of making the many fascinating topics discussed at the meeting accessible to a broader audience. The proceedings contains 57 contributions in total, all of which have been peer-reviewed after their presentation. These papers give a wide ranging overview of the current status of research, developments, and applications in parallel computing.
Author |
: Yousef Saad |
Publisher |
: SIAM |
Total Pages |
: 537 |
Release |
: 2003-04-01 |
ISBN-10 |
: 9780898715347 |
ISBN-13 |
: 0898715342 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Iterative Methods for Sparse Linear Systems by : Yousef Saad
Mathematics of Computing -- General.
Author |
: Dimitri Bertsekas |
Publisher |
: Athena Scientific |
Total Pages |
: 832 |
Release |
: 2015-03-01 |
ISBN-10 |
: 9781886529151 |
ISBN-13 |
: 1886529159 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Parallel and Distributed Computation: Numerical Methods by : Dimitri Bertsekas
This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.