Thermodynamics and Heat Powered Cycles

Thermodynamics and Heat Powered Cycles
Author :
Publisher : Nova Publishers
Total Pages : 684
Release :
ISBN-10 : 1600210341
ISBN-13 : 9781600210341
Rating : 4/5 (41 Downloads)

Synopsis Thermodynamics and Heat Powered Cycles by : Chih Wu

Due to the rapid advances in computer technology, intelligent computer software and multimedia have become essential parts of engineering education. Software integration with various media such as graphics, sound, video and animation is providing efficient tools for teaching and learning. A modern textbook should contain both the basic theory and principles, along with an updated pedagogy. Often traditional engineering thermodynamics courses are devoted only to analysis, with the expectation that students will be introduced later to relevant design considerations and concepts. Cycle analysis is logically and traditionally the focus of applied thermodynamics. Type and quantity are constrained, however, by the computational efforts required. The ability for students to approach realistic complexity is limited. Even analyses based upon grossly simplified cycle models can be computationally taxing, with limited educational benefits. Computerised look-up tables reduce computational labour somewhat, but modelling cycles with many interactive loops can lie well outside the limits of student and faculty time budgets. The need for more design content in thermodynamics books is well documented by industry and educational oversight bodies such as ABET (Accreditation Board for Engineering and Technology). Today, thermodynamic systems and cycles are fertile ground for engineering design. For example, niches exist for innovative power generation systems due to deregulation, co-generation, unstable fuel costs and concern for global warming. Professor Kenneth Forbus of the computer science and education department at Northwestern University has developed ideal intelligent computer software for thermodynamic students called CyclePad. CyclePad is a cognitive engineering software. It creates a virtual laboratory where students can efficiently learn the concepts of thermodynamics, and allows systems to be analyzed and designed in a simulated, interactive computer aided design environment. The software guides students through a design process and is able to provide explanations for results and to coach students in improving designs. Like a professor or senior engineer, CyclePad knows the laws of thermodynamics and how to apply them. If the user makes an error in design, the program is able to remind the user of essential principles or design steps that may have been overlooked. If more help is needed, the program can provide a documented, case study that recounts how engineers have resolved similar problems in real life situations. CyclePad eliminates the tedium of learning to apply thermodynamics, and relates what the user sees on the computer screen to the design of actual systems. This integrated, engineering textbook is the result of fourteen semesters of CyclePad usage and evaluation of a course designed to exploit the power of the software, and to chart a path that truly integrates the computer with education. The primary aim is to give students a thorough grounding in both the theory and practice of thermodynamics. The coverage is compact without sacrificing necessary theoretical rigor. Emphasis throughout is on the applications of the theory to actual processes and power cycles. This book will help educators in their effort to enhance education through the effective use of intelligent computer software and computer assisted course work.

Closed Power Cycles

Closed Power Cycles
Author :
Publisher : Springer Science & Business Media
Total Pages : 280
Release :
ISBN-10 : 9781447151401
ISBN-13 : 1447151402
Rating : 4/5 (01 Downloads)

Synopsis Closed Power Cycles by : Costante Mario Invernizzi

With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines operating in accordance with closed cycles is provided to develop ideas and discussions strictly founded on the basic thermodynamic facts that control the closed cycles operation and design. Closed Power Cycles: Thermodynamic Fundamentals and Applications also contains numerous examples which have been carried out with the help of the Aspen Plus®R program. Including chapters on binary cycles, the organic Rankine cycle and real closed gas cycles, Closed Power Cycles: Thermodynamic Fundamentals and Applications acts a solid introduction and reference for post-graduate students and researchers working in applied thermodynamics and energy conversion with thermodynamic engines.

Thermodynamics and Heat Power, Ninth Edition

Thermodynamics and Heat Power, Ninth Edition
Author :
Publisher : CRC Press
Total Pages : 674
Release :
ISBN-10 : 9781000198614
ISBN-13 : 1000198618
Rating : 4/5 (14 Downloads)

Synopsis Thermodynamics and Heat Power, Ninth Edition by : Irving Granet

The ninth edition of Thermodynamics and Heat Power contains a revised sequence of thermodynamics concepts including physical properties, processes, and energy systems, to enable the attainment of learning outcomes by Engineering and Engineering Technology students taking an introductory course in thermodynamics. Built around an easily understandable approach, this updated text focuses on thermodynamics fundamentals, and explores renewable energy generation, IC engines, power plants, HVAC, and applied heat transfer. Energy, heat, and work are examined in relation to thermodynamics cycles, and the effects of fluid properties on system performance are explained. Numerous step-by-step examples and problems make this text ideal for undergraduate students. This new edition: Introduces physics-based mathematical formulations and examples in a way that enables problem-solving. Contains extensive learning features within each chapter, and basic computational exercises for in-class and laboratory activities. Includes a straightforward review of applicable calculus concepts. Uses everyday examples to foster a better understanding of thermal science and engineering concepts. This book is suitable for undergraduate students in engineering and engineering technology.

Thermal Cycles of Heat Recovery Power Plants

Thermal Cycles of Heat Recovery Power Plants
Author :
Publisher : Bentham Science Publishers
Total Pages : 291
Release :
ISBN-10 : 9789811803758
ISBN-13 : 9811803757
Rating : 4/5 (58 Downloads)

Synopsis Thermal Cycles of Heat Recovery Power Plants by : Tangellapalli Srinivas

Thermal Cycles of Heat Recovery Power Plants presents information about thermal power plant cycles suitable for waste heat recovery (WHR) in modern power plants. The author covers five thermal power cycles: organic Rankine cycle (ORC), organic flash cycle (OFC), Kalina cycle (KC), steam Rankine cycle (SRC) and steam flash cycle (SFC) with the working fluids of R123, R124, R134a, R245fa, R717 and R407C. The handbook helps the reader to understand the latest power plant technologies suitable for utilizing the waste heat generated by thermal industrial processes. Key Features: - Comprehensive modeling, simulation, analysis and optimization of 5 power cycle types with different working fluids - Clear information about the processes and solutions of thermal power cycles to augment the power generation with improved energy conversion. - Simple, reader friendly presentation - bibliographic references after each chapter for further reading This handbook is suitable for engineering students in degree courses and professionals in training programs who require resources on advanced thermal power plant operation and optimal waste heat recovery processes, respectively. It is also a handy reference for energy conversion efficiency in heat recovery power plants. The book is also of interest to any researchers interested in industrial applications of thermodynamic processes.

Thermodynamics and Heat Power, Ninth Edition

Thermodynamics and Heat Power, Ninth Edition
Author :
Publisher : CRC Press
Total Pages : 865
Release :
ISBN-10 : 9781000198539
ISBN-13 : 1000198537
Rating : 4/5 (39 Downloads)

Synopsis Thermodynamics and Heat Power, Ninth Edition by : Irving Granet

The ninth edition of Thermodynamics and Heat Power contains a revised sequence of thermodynamics concepts including physical properties, processes, and energy systems, to enable the attainment of learning outcomes by Engineering and Engineering Technology students taking an introductory course in thermodynamics. Built around an easily understandable approach, this updated text focuses on thermodynamics fundamentals, and explores renewable energy generation, IC engines, power plants, HVAC, and applied heat transfer. Energy, heat, and work are examined in relation to thermodynamics cycles, and the effects of fluid properties on system performance are explained. Numerous step-by-step examples and problems make this text ideal for undergraduate students. This new edition: Introduces physics-based mathematical formulations and examples in a way that enables problem-solving. Contains extensive learning features within each chapter, and basic computational exercises for in-class and laboratory activities. Includes a straightforward review of applicable calculus concepts. Uses everyday examples to foster a better understanding of thermal science and engineering concepts. This book is suitable for undergraduate students in engineering and engineering technology.

Thermodynamics and Heat Power

Thermodynamics and Heat Power
Author :
Publisher : CRC Press
Total Pages : 838
Release :
ISBN-10 : 9781482238563
ISBN-13 : 148223856X
Rating : 4/5 (63 Downloads)

Synopsis Thermodynamics and Heat Power by : Irving Granet

Building on the last edition, (dedicated to exploring alternatives to coal- and oil-based energy conversion methods and published more than ten years ago), Thermodynamics and Heat Power, Eighth Edition updates the status of existing direct energy conversion methods as described in the previous work. Offering a systems approach to the analysis of en

Advanced Thermodynamics for Engineers

Advanced Thermodynamics for Engineers
Author :
Publisher : Butterworth-Heinemann
Total Pages : 399
Release :
ISBN-10 : 9780080523361
ISBN-13 : 0080523366
Rating : 4/5 (61 Downloads)

Synopsis Advanced Thermodynamics for Engineers by : D. Winterbone

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles
Author :
Publisher : Woodhead Publishing
Total Pages : 464
Release :
ISBN-10 : 9780081008058
ISBN-13 : 0081008058
Rating : 4/5 (58 Downloads)

Synopsis Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles by : Klaus Brun

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. - Represents the first book to focus exclusively on SC02 power cycles - Contains detailed coverage of cycle fundamentals, key components, and design challenges - Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion

Thermodynamics In Nuclear Power Plant Systems

Thermodynamics In Nuclear Power Plant Systems
Author :
Publisher : Springer
Total Pages : 735
Release :
ISBN-10 : 9783319134192
ISBN-13 : 3319134191
Rating : 4/5 (92 Downloads)

Synopsis Thermodynamics In Nuclear Power Plant Systems by : Bahman Zohuri

This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.

Physics of Cryogenics

Physics of Cryogenics
Author :
Publisher : Elsevier
Total Pages : 728
Release :
ISBN-10 : 9780128145203
ISBN-13 : 012814520X
Rating : 4/5 (03 Downloads)

Synopsis Physics of Cryogenics by : Bahman Zohuri

Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics. - Defines the fundamentals of thermodynamics that are associated with cryogenic processes - Provides an overview of the history of the development of cryogenic technology - Includes new, low temperature tables written by the author - Deals with the application of cryogenics to preserve objects at very low temperature - Explains how cryogenic phenomena work for human cell and human body preservations and new medical approaches