Theory of Semiconductor Quantum Devices

Theory of Semiconductor Quantum Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 382
Release :
ISBN-10 : 9783642105562
ISBN-13 : 3642105564
Rating : 4/5 (62 Downloads)

Synopsis Theory of Semiconductor Quantum Devices by : Fausto Rossi

Primary goal of this book is to provide a cohesive description of the vast field of semiconductor quantum devices, with special emphasis on basic quantum-mechanical phenomena governing the electro-optical response of new-generation nanomaterials. The book will cover within a common language different types of optoelectronic nanodevices, including quantum-cascade laser sources and detectors, few-electron/exciton quantum devices, and semiconductor-based quantum logic gates. The distinguishing feature of the present volume is a unified microscopic treatment of quantum-transport and coherent-optics phenomena on ultrasmall space- and time-scales, as well as of their semiclassical counterparts.

Advanced Theory of Semiconductor Devices

Advanced Theory of Semiconductor Devices
Author :
Publisher : Wiley-IEEE Press
Total Pages : 360
Release :
ISBN-10 : STANFORD:36105028522089
ISBN-13 :
Rating : 4/5 (89 Downloads)

Synopsis Advanced Theory of Semiconductor Devices by : Karl Hess

Electrical Engineering Advanced Theory of Semiconductor Devices Semiconductor devices are ubiquitous in today’s world and are found increasingly in cars, kitchens and electronic door locks, attesting to their presence in our daily lives. This comprehensive book provides the fundamentals of semiconductor device theory from basic quantum physics to computer-aided design. Advanced Theory of Semiconductor Devices will improve your understanding of computer simulation of devices through a thorough discussion of basic equations, their validity, and numerical solutions as they are contained in current simulation tools. You will gain state-of-the-art knowledge of devices used in both III–V compounds and silicon technology. Specially featured are novel approaches and explanations of electronic transport, particularly in p—n junction diodes. Close attention is also given to innovative treatments of quantum-well laser diodes and hot electron effects in silicon technology. This in-depth book is written for engineers, graduate students, and research scientists in solid-state electronics who want to gain a better understanding of the principles underlying semiconductor devices.

Physical Models of Semiconductor Quantum Devices

Physical Models of Semiconductor Quantum Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 416
Release :
ISBN-10 : 9789400771741
ISBN-13 : 9400771746
Rating : 4/5 (41 Downloads)

Synopsis Physical Models of Semiconductor Quantum Devices by : Ying Fu

The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.

Physics of Quantum Electron Devices

Physics of Quantum Electron Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 416
Release :
ISBN-10 : 9783642747519
ISBN-13 : 3642747515
Rating : 4/5 (19 Downloads)

Synopsis Physics of Quantum Electron Devices by : Federico Capasso

The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.

Semiconductor Quantum Optics

Semiconductor Quantum Optics
Author :
Publisher : Cambridge University Press
Total Pages : 658
Release :
ISBN-10 : 9781139502511
ISBN-13 : 1139502514
Rating : 4/5 (11 Downloads)

Synopsis Semiconductor Quantum Optics by : Mackillo Kira

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.

Quantum Physics of Semiconductor Materials and Devices

Quantum Physics of Semiconductor Materials and Devices
Author :
Publisher : Oxford University Press
Total Pages : 896
Release :
ISBN-10 : 9780192598929
ISBN-13 : 0192598929
Rating : 4/5 (29 Downloads)

Synopsis Quantum Physics of Semiconductor Materials and Devices by : Debdeep Jena

”Quantum Phenomena do not occur in a Hilbert space. They occur in a laboratory”. - Asher Peres Semiconductor physics is a laboratory to learn and discover the concepts of quantum mechanics and thermodynamics, condensed matter physics, and materials science, and the payoffs are almost immediate in the form of useful semiconductor devices. Debdeep Jena has had the opportunity to work on both sides of the fence - on the fundamental materials science and quantum physics of semiconductors, and in their applications in semiconductor electronic and photonic devices. In Quantum Physics of Semiconductors and Nanostructures, Jena uses this experience to make each topic as tangible and accessible as possible to students at all levels. Consider the simplest physical processes that occur in semiconductors: electron or hole transport in bands and over barriers, collision of electrons with the atoms in the crystal, or when electrons and holes annihilate each other to produce a photon. The correct explanation of these processes require a quantum mechanical treatment. Any shortcuts lead to misconceptions that can take years to dispel, and sometimes become roadblocks towards a deeper understanding and appreciation of the richness of the subject. A typical introductory course on semiconductor physics would then require prerequisites of quantum mechanics, statistical physics and thermodynamics, materials science, and electromagnetism. Rarely would a student have all this background when (s)he takes a course of this nature in most universities. Jena's work fills in these gaps and gives students the background and deeper understanding of the quantum physics of semiconductors and nanostructures.

Theoretical Foundations of Nanoscale Quantum Devices

Theoretical Foundations of Nanoscale Quantum Devices
Author :
Publisher : Cambridge University Press
Total Pages : 299
Release :
ISBN-10 : 9781108475662
ISBN-13 : 1108475663
Rating : 4/5 (62 Downloads)

Synopsis Theoretical Foundations of Nanoscale Quantum Devices by : Malin Premaratne

This self-contained text describes the underlying theory and approximate quantum models of real nanodevices for nanotechnology applications.

Modern Semiconductor Physics and Device Applications

Modern Semiconductor Physics and Device Applications
Author :
Publisher : CRC Press
Total Pages : 397
Release :
ISBN-10 : 9781000462296
ISBN-13 : 1000462293
Rating : 4/5 (96 Downloads)

Synopsis Modern Semiconductor Physics and Device Applications by : Vitalii K Dugaev

This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Quantum Semiconductor Structures

Quantum Semiconductor Structures
Author :
Publisher : Elsevier
Total Pages : 265
Release :
ISBN-10 : 9780080515571
ISBN-13 : 0080515576
Rating : 4/5 (71 Downloads)

Synopsis Quantum Semiconductor Structures by : Claude Weisbuch

In its original form, this widely acclaimed primer on the fundamentals of quantized semiconductor structures was published as an introductory chapter in Raymond Dingle's edited volume (24) of Semiconductors and Semimetals. Having already been praised by reviewers for its excellent coverage, this material is now available in an updated and expanded "student edition." This work promises to become a standard reference in the field. It covers the basics of electronic states as well as the fundamentals of optical interactions and quantum transport in two-dimensional quantized systems. This revised student edition also includes entirely new sections discussing applications and one-dimensional and zero-dimensional systems. - Available for the first time in a new, expanded version - Provides a concise introduction to the fundamentals and fascinating applications of quantized semiconductor structures

Theory of Modern Electronic Semiconductor Devices

Theory of Modern Electronic Semiconductor Devices
Author :
Publisher : Wiley-Interscience
Total Pages : 472
Release :
ISBN-10 : UOM:39015054456598
ISBN-13 :
Rating : 4/5 (98 Downloads)

Synopsis Theory of Modern Electronic Semiconductor Devices by : Kevin F. Brennan

A thorough examination of the present and future of semiconductor device technology Engineers continue to develop new electronic semiconductor devices that are almost exponentially smaller, faster, and more efficient than their immediate predecessors. Theory of Modern Electronic Semiconductor Devices endeavors to provide an up-to-date, extended discussion of the most important emerging devices and trends in semiconductor technology, setting the pace for the next generation of the discipline's literature. Kevin Brennan and April Brown focus on three increasingly important areas: telecommunications, quantum structures, and challenges and alternatives to CMOS technology. Specifically, the text examines the behavior of heterostructure devices for communications systems, quantum phenomena that appear in miniaturized structures and new nanoelectronic device types that exploit these effects, the challenges faced by continued miniaturization of CMOS devices, and futuristic alternatives. Device structures on the commercial and research levels analyzed in detail include: * Heterostructure field effect transistors * Bipolar and CMOS transistors * Resonant tunneling diodes * Real space transfer transistors * Quantum dot cellular automata * Single electron transistors The book contains many homework exercises at the end of each chapter, and a solution manual can be obtained for instructors. Emphasizing the development of new technology, Theory of Modern Electronic Semiconductor Devices is an ideal companion to electrical and computer engineering graduate level courses and an essential reference for semiconductor device engineers.