Theory of Ridge Regression Estimation with Applications

Theory of Ridge Regression Estimation with Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 404
Release :
ISBN-10 : 9781118644508
ISBN-13 : 1118644506
Rating : 4/5 (08 Downloads)

Synopsis Theory of Ridge Regression Estimation with Applications by : A. K. Md. Ehsanes Saleh

A guide to the systematic analytical results for ridge, LASSO, preliminary test, and Stein-type estimators with applications Theory of Ridge Regression Estimation with Applications offers a comprehensive guide to the theory and methods of estimation. Ridge regression and LASSO are at the center of all penalty estimators in a range of standard models that are used in many applied statistical analyses. Written by noted experts in the field, the book contains a thorough introduction to penalty and shrinkage estimation and explores the role that ridge, LASSO, and logistic regression play in the computer intensive area of neural network and big data analysis. Designed to be accessible, the book presents detailed coverage of the basic terminology related to various models such as the location and simple linear models, normal and rank theory-based ridge, LASSO, preliminary test and Stein-type estimators. The authors also include problem sets to enhance learning. This book is a volume in the Wiley Series in Probability and Statistics series that provides essential and invaluable reading for all statisticians. This important resource: Offers theoretical coverage and computer-intensive applications of the procedures presented Contains solutions and alternate methods for prediction accuracy and selecting model procedures Presents the first book to focus on ridge regression and unifies past research with current methodology Uses R throughout the text and includes a companion website containing convenient data sets Written for graduate students, practitioners, and researchers in various fields of science, Theory of Ridge Regression Estimation with Applications is an authoritative guide to the theory and methodology of statistical estimation.

Regression Estimators

Regression Estimators
Author :
Publisher : Academic Press
Total Pages : 361
Release :
ISBN-10 : 9781483260976
ISBN-13 : 1483260976
Rating : 4/5 (76 Downloads)

Synopsis Regression Estimators by : Marvin H. J. Gruber

Regression Estimators: A Comparative Study presents, compares, and contrasts the development and the properties of the ridge type estimators that result from both Bayesian and non-Bayesian (frequentist) methods. The book is divided into four parts. The first part (Chapters I and II) discusses the need for alternatives to least square estimators, gives a historical survey of the literature and summarizes basic ideas in Matrix Theory and Statistical Decision Theory used throughout the book. The second part (Chapters III and IV) covers the estimators from both the Bayesian and from the frequentist points of view and explores the mathematical relationships between them. The third part (Chapters V-VIII) considers the efficiency of the estimators with and without averaging over a prior distribution. Part IV, the final two chapters IX and X, suggests applications of the methods and results of Chapters III-VII to Kaiman Filters and Analysis of Variance, two very important areas of application. Statisticians and workers in fields that use statistical methods who would like to know more about the analytical properties of ridge type estimators will find the book invaluable.

Ridge Fuzzy Regression Modelling for Solving Multicollinearity

Ridge Fuzzy Regression Modelling for Solving Multicollinearity
Author :
Publisher : Infinite Study
Total Pages : 15
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Ridge Fuzzy Regression Modelling for Solving Multicollinearity by : Hyoshin Kim

This paper proposes an a-level estimation algorithm for ridge fuzzy regression modeling, addressing the multicollinearity phenomenon in the fuzzy linear regression setting.

Linear Regression Analysis

Linear Regression Analysis
Author :
Publisher : World Scientific
Total Pages : 349
Release :
ISBN-10 : 9789812834102
ISBN-13 : 9812834109
Rating : 4/5 (02 Downloads)

Synopsis Linear Regression Analysis by : Xin Yan

"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.

Improving Efficiency by Shrinkage

Improving Efficiency by Shrinkage
Author :
Publisher : Routledge
Total Pages : 648
Release :
ISBN-10 : 9781351439169
ISBN-13 : 1351439162
Rating : 4/5 (69 Downloads)

Synopsis Improving Efficiency by Shrinkage by : Marvin Gruber

Offers a treatment of different kinds of James-Stein and ridge regression estimators from a frequentist and Bayesian point of view. The book explains and compares estimators analytically as well as numerically and includes Mathematica and Maple programs used in numerical comparison.;College or university bookshops may order five or more copies at a special student rate, available on request.

Parameter Estimation in Engineering and Science

Parameter Estimation in Engineering and Science
Author :
Publisher : James Beck
Total Pages : 540
Release :
ISBN-10 : 0471061182
ISBN-13 : 9780471061182
Rating : 4/5 (82 Downloads)

Synopsis Parameter Estimation in Engineering and Science by : James Vere Beck

Introduction to and survey of parameter estimation; Probability; Introduction to statistics; Parameter estimation methods; Introduction to linear estimation; Matrix analysis for linear parameter estimation; Minimization of sum of squares functions for models nonlinear in parameters; Design of optimal experiments.

Applied Linear Statistical Models

Applied Linear Statistical Models
Author :
Publisher : McGraw-Hill/Irwin
Total Pages : 1396
Release :
ISBN-10 : 0072386886
ISBN-13 : 9780072386882
Rating : 4/5 (86 Downloads)

Synopsis Applied Linear Statistical Models by : Michael H. Kutner

Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Statistical Learning with Sparsity

Statistical Learning with Sparsity
Author :
Publisher : CRC Press
Total Pages : 354
Release :
ISBN-10 : 9781498712170
ISBN-13 : 1498712177
Rating : 4/5 (70 Downloads)

Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Alternative Methods of Regression

Alternative Methods of Regression
Author :
Publisher : John Wiley & Sons
Total Pages : 248
Release :
ISBN-10 : 9781118150245
ISBN-13 : 1118150244
Rating : 4/5 (45 Downloads)

Synopsis Alternative Methods of Regression by : David Birkes

Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data sets real. Topics include: multi-response parameter estimation; models defined by systems of differential equations; and improved methods for presenting inferential results of nonlinear analysis. 1988 (0-471-81643-4) 365 pp. Nonlinear Regression G. A. F. Seber and C. J. Wild ".[a] comprehensive and scholarly work.impressively thorough with attention given to every aspect of the modeling process." --Short Book Reviews of the International Statistical Institute In this introduction to nonlinear modeling, the authors examine a wide range of estimation techniques including least squares, quasi-likelihood, and Bayesian methods, and discuss some of the problems associated with estimation. The book presents new and important material relating to the concept of curvature and its growing role in statistical inference. It also covers three useful classes of models --growth, compartmental, and multiphase --and emphasizes the limitations involved in fitting these models. Packed with examples and graphs, it offers statisticians, statistical consultants, and statistically oriented research scientists up-to-date access to their fields. 1989 (0-471-61760-1) 768 pp. Mathematical Programming in Statistics T. S. Arthanari and Yadolah Dodge "The authors have achieved their stated intention.in an outstanding and useful manner for both students and researchers.Contains a superb synthesis of references linked to the special topics and formulations by a succinct set of bibliographical notes.Should be in the hands of all system analysts and computer system architects." --Computing Reviews This unique book brings together most of the available results on applications of mathematical programming in statistics, and also develops the necessary statistical and programming theory and methods. 1981 (0-471-08073-X) 413 pp.

Regression Analysis

Regression Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 361
Release :
ISBN-10 : 9781461244707
ISBN-13 : 1461244706
Rating : 4/5 (07 Downloads)

Synopsis Regression Analysis by : Ashish Sen

An up-to-date, rigorous, and lucid treatment of the theory, methods, and applications of regression analysis, and thus ideally suited for those interested in the theory as well as those whose interests lie primarily with applications. It is further enhanced through real-life examples drawn from many disciplines, showing the difficulties typically encountered in the practice of regression analysis. Consequently, this book provides a sound foundation in the theory of this important subject.