The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation

The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation
Author :
Publisher : Springer
Total Pages : 268
Release :
ISBN-10 : 9783709118009
ISBN-13 : 370911800X
Rating : 4/5 (09 Downloads)

Synopsis The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation by : Mahdi Pourfath

For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.

Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems
Author :
Publisher : Cambridge University Press
Total Pages : 619
Release :
ISBN-10 : 9781107354579
ISBN-13 : 1107354579
Rating : 4/5 (79 Downloads)

Synopsis Nonequilibrium Many-Body Theory of Quantum Systems by : Gianluca Stefanucci

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

Introductory Nanoelectronics

Introductory Nanoelectronics
Author :
Publisher : CRC Press
Total Pages : 911
Release :
ISBN-10 : 9781351204651
ISBN-13 : 1351204653
Rating : 4/5 (51 Downloads)

Synopsis Introductory Nanoelectronics by : Vinod Kumar Khanna

This introductory text develops the reader’s fundamental understanding of core principles and experimental aspects underlying the operation of nanoelectronic devices. The author makes a thorough and systematic presentation of electron transport in quantum-confined systems such as quantum dots, quantum wires, and quantum wells together with Landauer-Büttiker formalism and non-equilibrium Green’s function approach. The coverage encompasses nanofabrication techniques and characterization tools followed by a comprehensive exposition of nanoelectronic devices including resonant tunneling diodes, nanoscale MOSFETs, carbon nanotube FETs, high-electron-mobility transistors, single-electron transistors, and heterostructure optoelectronic devices. The writing throughout is simple and straightforward, with clearly drawn illustrations and extensive self-study exercises for each chapter. Introduces the basic concepts underlying the operation of nanoelectronic devices. Offers a broad overview of the field, including state-of-the-art developments. Covers the relevant quantum and solid-state physics and nanoelectronic device principles. Written in lucid language with accessible mathematical treatment. Includes extensive end-of-chapter exercises and many insightful diagrams.

Theory and Simulation Methods for Electronic and Phononic Transport in Thermoelectric Materials

Theory and Simulation Methods for Electronic and Phononic Transport in Thermoelectric Materials
Author :
Publisher : Springer Nature
Total Pages : 97
Release :
ISBN-10 : 9783030386818
ISBN-13 : 3030386813
Rating : 4/5 (18 Downloads)

Synopsis Theory and Simulation Methods for Electronic and Phononic Transport in Thermoelectric Materials by : Neophytos Neophytou

This book introduces readers to state-of-the-art theoretical and simulation techniques for determining transport in complex band structure materials and nanostructured-geometry materials, linking the techniques developed by the electronic transport community to the materials science community. Starting from the semi-classical Boltzmann Transport Equation method for complex band structure materials, then moving on to Monte Carlo and fully quantum mechanical models for nanostructured materials, the book addresses the theory and computational complexities of each method, as well as their advantages and capabilities. Presented in language that is accessible to junior computational scientists, while including enough detail and depth with regards to numerical implementation to tackle modern research problems, it offers a valuable resource for computational scientists and postgraduate researchers whose work involves the theory and simulation of electro-thermal transport in advanced materials.

Handbook of Optoelectronic Device Modeling and Simulation

Handbook of Optoelectronic Device Modeling and Simulation
Author :
Publisher : CRC Press
Total Pages : 835
Release :
ISBN-10 : 9781498749473
ISBN-13 : 149874947X
Rating : 4/5 (73 Downloads)

Synopsis Handbook of Optoelectronic Device Modeling and Simulation by : Joachim Piprek

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.

Springer Handbook of Semiconductor Devices

Springer Handbook of Semiconductor Devices
Author :
Publisher : Springer Nature
Total Pages : 1680
Release :
ISBN-10 : 9783030798277
ISBN-13 : 3030798275
Rating : 4/5 (77 Downloads)

Synopsis Springer Handbook of Semiconductor Devices by : Massimo Rudan

This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.

Nanoscale Transistors

Nanoscale Transistors
Author :
Publisher : Springer Science & Business Media
Total Pages : 223
Release :
ISBN-10 : 9780387280035
ISBN-13 : 0387280030
Rating : 4/5 (35 Downloads)

Synopsis Nanoscale Transistors by : Mark Lundstrom

To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules

Quantum Hybrid Electronics and Materials

Quantum Hybrid Electronics and Materials
Author :
Publisher : Springer Nature
Total Pages : 347
Release :
ISBN-10 : 9789811912016
ISBN-13 : 9811912017
Rating : 4/5 (16 Downloads)

Synopsis Quantum Hybrid Electronics and Materials by : Yoshiro Hirayama

This book highlights recent advances in quantum control technologies with regard to hybrid quantum systems. It addresses the following topics: phonon engineering based on phononic crystals, carbon-based nano materials like graphene and nanotubes, Terahertz light technology for single-molecule and quantum dots, nuclear-spin-based metrology for semiconductor quantum systems, quantum anomalous Hall effect in magnetic topological insulators, chiral three-dimensional photonic crystals, and bio-inspired magnonic systems. Each topic, as a component in the framework of hybrid quantum systems, is concisely presented by experts at the forefront of the field. Accordingly, the book offers a valuable asset, and will help readers find advanced technologies and materials suitable for their purposes.

Computational Electronics

Computational Electronics
Author :
Publisher : CRC Press
Total Pages : 782
Release :
ISBN-10 : 9781420064841
ISBN-13 : 1420064843
Rating : 4/5 (41 Downloads)

Synopsis Computational Electronics by : Dragica Vasileska

Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift-diffusion, hydrodynamic, and Monte Carlo methods for solving the Boltzmann transport equation. Details regarding numerical implementation and sample codes are provided as templates for sophisticated simulation software. The second part introduces the density gradient method, quantum hydrodynamics, and the concept of effective potentials used to account for quantum-mechanical space quantization effects in particle-based simulators. Highlighting the need for quantum transport approaches, it describes various quantum effects that appear in current and future devices being mass-produced or fabricated as a proof of concept. In this context, it introduces the concept of effective potential used to approximately include quantum-mechanical space-quantization effects within the semiclassical particle-based device simulation scheme. Addressing the practical aspects of computational electronics, this authoritative resource concludes by addressing some of the open questions related to quantum transport not covered in most books. Complete with self-study problems and numerous examples throughout, this book supplies readers with the practical understanding required to create their own simulators.

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology
Author :
Publisher : World Scientific
Total Pages : 838
Release :
ISBN-10 : 9789814472975
ISBN-13 : 9814472972
Rating : 4/5 (75 Downloads)

Synopsis Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology by : Felix A Buot

This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.