The Elements of Stochastic Processes with Applications to the Natural Sciences

The Elements of Stochastic Processes with Applications to the Natural Sciences
Author :
Publisher : John Wiley & Sons
Total Pages : 268
Release :
ISBN-10 : 0471523682
ISBN-13 : 9780471523680
Rating : 4/5 (82 Downloads)

Synopsis The Elements of Stochastic Processes with Applications to the Natural Sciences by : Norman T. J. Bailey

Develops an introductory and relatively simple account of the theory and application of the evolutionary type of stochastic process. Professor Bailey adopts the heuristic approach of applied mathematics and develops both theoretical principles and applied techniques simultaneously.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9783319456140
ISBN-13 : 3319456148
Rating : 4/5 (40 Downloads)

Synopsis Essentials of Stochastic Processes by : Richard Durrett

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Stochastic Processes with Applications

Stochastic Processes with Applications
Author :
Publisher : SIAM
Total Pages : 726
Release :
ISBN-10 : 9780898716894
ISBN-13 : 0898716896
Rating : 4/5 (94 Downloads)

Synopsis Stochastic Processes with Applications by : Rabi N. Bhattacharya

This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author :
Publisher : Academic Press
Total Pages : 410
Release :
ISBN-10 : 9781483269276
ISBN-13 : 1483269272
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Processes and Applications

Stochastic Processes and Applications
Author :
Publisher : Springer
Total Pages : 345
Release :
ISBN-10 : 9781493913237
ISBN-13 : 1493913239
Rating : 4/5 (37 Downloads)

Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

An Introduction to Stochastic Processes with Applications to Biology

An Introduction to Stochastic Processes with Applications to Biology
Author :
Publisher : CRC Press
Total Pages : 486
Release :
ISBN-10 : 9781439894682
ISBN-13 : 143989468X
Rating : 4/5 (82 Downloads)

Synopsis An Introduction to Stochastic Processes with Applications to Biology by : Linda J. S. Allen

An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and

Stochastic Models In The Life Sciences And Their Methods Of Analysis

Stochastic Models In The Life Sciences And Their Methods Of Analysis
Author :
Publisher : World Scientific
Total Pages : 477
Release :
ISBN-10 : 9789813274624
ISBN-13 : 981327462X
Rating : 4/5 (24 Downloads)

Synopsis Stochastic Models In The Life Sciences And Their Methods Of Analysis by : Frederic Y M Wan

'… the volume is impressively accessible. The result is a book that is valuable and approachable for biologists at all levels, including those interested in deepening their skills in mathematical modeling and those who seek an overview to aid them in communicating with collaborators in mathematics and statistics. The former group of readers may especially appreciate the first chapter, an introduction to key concepts in probability, and the set of ten assignments provided as an appendix.'CHOICEBiological processes are evolutionary in nature and often evolve in a noisy environment or in the presence of uncertainty. Such evolving phenomena are necessarily modeled mathematically by stochastic differential/difference equations (SDE), which have been recognized as essential for a true understanding of many biological phenomena. Yet, there is a dearth of teaching material in this area for interested students and researchers, notwithstanding the addition of some recent texts on stochastic modelling in the life sciences. The reason may well be the demanding mathematical pre-requisites needed to 'solve' SDE.A principal goal of this volume is to provide a working knowledge of SDE based on the premise that familiarity with the basic elements of a stochastic calculus for random processes is unavoidable. Through some SDE models of familiar biological phenomena, we show how stochastic methods developed for other areas of science and engineering are also useful in the life sciences. In the process, the volume introduces to biologists a collection of analytical and computational methods for research and applications in this emerging area of life science. The additions broaden the available tools for SDE models for biologists that have been limited by and large to stochastic simulations.

Combinatorial Stochastic Processes

Combinatorial Stochastic Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 257
Release :
ISBN-10 : 9783540309901
ISBN-13 : 354030990X
Rating : 4/5 (01 Downloads)

Synopsis Combinatorial Stochastic Processes by : Jim Pitman

The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.

Empirical Model Building

Empirical Model Building
Author :
Publisher : John Wiley & Sons
Total Pages : 264
Release :
ISBN-10 : 9780470317457
ISBN-13 : 0470317450
Rating : 4/5 (57 Downloads)

Synopsis Empirical Model Building by : James R. Thompson

A hands-on approach to the basic principles of empirical model building. Includes a series of real-world statistical problems illustrating modeling skills and techniques. Covers models of growth and decay, systems where competition and interaction add to the complexity of the model, and discusses both classical and nonclassical data analysis methods.

Alternative Methods of Regression

Alternative Methods of Regression
Author :
Publisher : John Wiley & Sons
Total Pages : 248
Release :
ISBN-10 : 9781118150245
ISBN-13 : 1118150244
Rating : 4/5 (45 Downloads)

Synopsis Alternative Methods of Regression by : David Birkes

Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data sets real. Topics include: multi-response parameter estimation; models defined by systems of differential equations; and improved methods for presenting inferential results of nonlinear analysis. 1988 (0-471-81643-4) 365 pp. Nonlinear Regression G. A. F. Seber and C. J. Wild ".[a] comprehensive and scholarly work.impressively thorough with attention given to every aspect of the modeling process." --Short Book Reviews of the International Statistical Institute In this introduction to nonlinear modeling, the authors examine a wide range of estimation techniques including least squares, quasi-likelihood, and Bayesian methods, and discuss some of the problems associated with estimation. The book presents new and important material relating to the concept of curvature and its growing role in statistical inference. It also covers three useful classes of models --growth, compartmental, and multiphase --and emphasizes the limitations involved in fitting these models. Packed with examples and graphs, it offers statisticians, statistical consultants, and statistically oriented research scientists up-to-date access to their fields. 1989 (0-471-61760-1) 768 pp. Mathematical Programming in Statistics T. S. Arthanari and Yadolah Dodge "The authors have achieved their stated intention.in an outstanding and useful manner for both students and researchers.Contains a superb synthesis of references linked to the special topics and formulations by a succinct set of bibliographical notes.Should be in the hands of all system analysts and computer system architects." --Computing Reviews This unique book brings together most of the available results on applications of mathematical programming in statistics, and also develops the necessary statistical and programming theory and methods. 1981 (0-471-08073-X) 413 pp.