Statistical Analysis of Empirical Data

Statistical Analysis of Empirical Data
Author :
Publisher : Springer Nature
Total Pages : 278
Release :
ISBN-10 : 9783030433284
ISBN-13 : 3030433285
Rating : 4/5 (84 Downloads)

Synopsis Statistical Analysis of Empirical Data by : Scott Pardo

Researchers and students who use empirical investigation in their work must go through the process of selecting statistical methods for analyses, and they are often challenged to justify these selections. This book is designed for readers with limited background in statistical methodology who seek guidance in defending their statistical decision-making in the worlds of research and practice. It is devoted to helping students and scholars find the information they need to select data analytic methods, and to speak knowledgeably about their statistical research processes. Each chapter opens with a conundrum relating to the selection of an analysis, or to explaining the nature of an analysis. Throughout the chapter, the analysis is described, along with some guidance in justifying the choices of that particular method. Designed to offer statistical knowledge to the non-specialist, this volume can be used in courses on research methods, or for courses on statistical applications to biological, medical, life, social, or physical sciences. It will also be useful to academic and industrial researchers in engineering and in the physical sciences who will benefit from a stronger understanding of how to analyze empirical data. The book is written for those with foundational education in calculus. However, a brief review of fundamental concepts of probability and statistics, together with a primer on some concepts in elementary calculus and matrix algebra, is included. R code and sample datasets are provided.

Empirical Modeling and Data Analysis for Engineers and Applied Scientists

Empirical Modeling and Data Analysis for Engineers and Applied Scientists
Author :
Publisher : Springer
Total Pages : 255
Release :
ISBN-10 : 9783319327686
ISBN-13 : 3319327682
Rating : 4/5 (86 Downloads)

Synopsis Empirical Modeling and Data Analysis for Engineers and Applied Scientists by : Scott A. Pardo

This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process. This text teaches engineering and applied science students to incorporate empirical investigation into such design processes. Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to construct adequate models. Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation) Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process. Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages: SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter. The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.

Exploratory Data Analysis in Empirical Research

Exploratory Data Analysis in Empirical Research
Author :
Publisher : Springer Science & Business Media
Total Pages : 547
Release :
ISBN-10 : 9783642557217
ISBN-13 : 364255721X
Rating : 4/5 (17 Downloads)

Synopsis Exploratory Data Analysis in Empirical Research by : Manfred Schwaiger

This volume presents a selection of new methods and approaches in the field of Exploratory Data Analysis. The reader will find numerous ideas and examples for cross disciplinary applications of classification and data analysis methods in fields such as data and web mining, medicine and biological sciences as well as marketing, finance and management sciences.

Applied Statistics and Multivariate Data Analysis for Business and Economics

Applied Statistics and Multivariate Data Analysis for Business and Economics
Author :
Publisher : Springer
Total Pages : 488
Release :
ISBN-10 : 9783030177676
ISBN-13 : 303017767X
Rating : 4/5 (76 Downloads)

Synopsis Applied Statistics and Multivariate Data Analysis for Business and Economics by : Thomas Cleff

This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.

Statistics and Causality

Statistics and Causality
Author :
Publisher : John Wiley & Sons
Total Pages : 497
Release :
ISBN-10 : 9781118947067
ISBN-13 : 1118947061
Rating : 4/5 (67 Downloads)

Synopsis Statistics and Causality by : Wolfgang Wiedermann

b”STATISTICS AND CAUSALITYA one-of-a-kind guide to identifying and dealing with modern statistical developments in causality Written by a group of well-known experts, Statistics and Causality: Methods for Applied Empirical Research focuses on the most up-to-date developments in statistical methods in respect to causality. Illustrating the properties of statistical methods to theories of causality, the book features a summary of the latest developments in methods for statistical analysis of causality hypotheses. The book is divided into five accessible and independent parts. The first part introduces the foundations of causal structures and discusses issues associated with standard mechanistic and difference-making theories of causality. The second part features novel generalizations of methods designed to make statements concerning the direction of effects. The third part illustrates advances in Granger-causality testing and related issues. The fourth part focuses on counterfactual approaches and propensity score analysis. Finally, the fifth part presents designs for causal inference with an overview of the research designs commonly used in epidemiology. Statistics and Causality: Methods for Applied Empirical Research also includes: New statistical methodologies and approaches to causal analysis in the context of the continuing development of philosophical theories End-of-chapter bibliographies that provide references for further discussions and additional research topics Discussions on the use and applicability of software when appropriate Statistics and Causality: Methods for Applied Empirical Research is an ideal reference for practicing statisticians, applied mathematicians, psychologists, sociologists, logicians, medical professionals, epidemiologists, and educators who want to learn more about new methodologies in causal analysis. The book is also an excellent textbook for graduate-level courses in causality and qualitative logic.

Empirical Research in Statistics Education

Empirical Research in Statistics Education
Author :
Publisher : Springer
Total Pages : 44
Release :
ISBN-10 : 9783319389684
ISBN-13 : 3319389688
Rating : 4/5 (84 Downloads)

Synopsis Empirical Research in Statistics Education by : Andreas Eichler

This ICME-13 Topical Survey provides a review of recent research into statistics education, with a focus on empirical research published in established educational journals and on the proceedings of important conferences on statistics education. It identifies and addresses six key research topics, namely: teachers’ knowledge; teachers’ role in statistics education; teacher preparation; students’ knowledge; students’ role in statistics education; and how students learn statistics with the help of technology. For each topic, the survey builds upon existing reviews, complementing them with the latest research.

Introduction to Space Syntax in Urban Studies

Introduction to Space Syntax in Urban Studies
Author :
Publisher : Springer Nature
Total Pages : 265
Release :
ISBN-10 : 9783030591403
ISBN-13 : 3030591409
Rating : 4/5 (03 Downloads)

Synopsis Introduction to Space Syntax in Urban Studies by : Akkelies van Nes

This open access textbook is a comprehensive introduction to space syntax method and theory for graduate students and researchers. It provides a step-by-step approach for its application in urban planning and design. This textbook aims to increase the accessibility of the space syntax method for the first time to all graduate students and researchers who are dealing with the built environment, such as those in the field of architecture, urban design and planning, urban sociology, urban geography, archaeology, road engineering, and environmental psychology. Taking a didactical approach, the authors have structured each chapter to explain key concepts and show practical examples followed by underlying theory and provided exercises to facilitate learning in each chapter. The textbook gradually eases the reader into the fundamental concepts and leads them towards complex theories and applications. In summary, the general competencies gain after reading this book are: – to understand, explain, and discuss space syntax as a method and theory; – be capable of undertaking various space syntax analyses such as axial analysis, segment analysis, point depth analysis, or visibility analysis; – be able to apply space syntax for urban research and design practice; – be able to interpret and evaluate space syntax analysis results and embed these in a wider context; – be capable of producing new original work using space syntax. This holistic textbook functions as compulsory literature for spatial analysis courses where space syntax is part of the methods taught. Likewise, this space syntax book is useful for graduate students and researchers who want to do self-study. Furthermore, the book provides readers with the fundamental knowledge to understand and critically reflect on existing literature using space syntax.

Statistical Analysis in Climate Research

Statistical Analysis in Climate Research
Author :
Publisher : Cambridge University Press
Total Pages : 979
Release :
ISBN-10 : 9781139425094
ISBN-13 : 1139425099
Rating : 4/5 (94 Downloads)

Synopsis Statistical Analysis in Climate Research by : Hans von Storch

Climatology is, to a large degree, the study of the statistics of our climate. The powerful tools of mathematical statistics therefore find wide application in climatological research. The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialised techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research. Suitable for graduate courses on statistics for climatic, atmospheric and oceanic science, this book will also be valuable as a reference source for researchers in climatology, meteorology, atmospheric science, and oceanography.

Contemporary Empirical Methods in Software Engineering

Contemporary Empirical Methods in Software Engineering
Author :
Publisher : Springer Nature
Total Pages : 520
Release :
ISBN-10 : 9783030324896
ISBN-13 : 3030324893
Rating : 4/5 (96 Downloads)

Synopsis Contemporary Empirical Methods in Software Engineering by : Michael Felderer

This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Modern Analysis of Customer Surveys

Modern Analysis of Customer Surveys
Author :
Publisher : John Wiley & Sons
Total Pages : 533
Release :
ISBN-10 : 9780470971284
ISBN-13 : 0470971282
Rating : 4/5 (84 Downloads)

Synopsis Modern Analysis of Customer Surveys by : Ron S. Kenett

Customer survey studies deals with customers, consumers and user satisfaction from a product or service. In practice, many of the customer surveys conducted by business and industry are analyzed in a very simple way, without using models or statistical methods. Typical reports include descriptive statistics and basic graphical displays. As demonstrated in this book, integrating such basic analysis with more advanced tools, provides insights on non-obvious patterns and important relationships between the survey variables. This knowledge can significantly affect the conclusions derived from a survey. Key features: Provides an integrated, case-studies based approach to analysing customer survey data. Presents a general introduction to customer surveys, within an organization’s business cycle. Contains classical techniques with modern and non standard tools. Focuses on probabilistic techniques from the area of statistics/data analysis and covers all major recent developments. Accompanied by a supporting website containing datasets and R scripts. Customer survey specialists, quality managers and market researchers will benefit from this book as well as specialists in marketing, data mining and business intelligence fields.