Spectral Methods For Time Dependent Problems
Download Spectral Methods For Time Dependent Problems full books in PDF, epub, and Kindle. Read online free Spectral Methods For Time Dependent Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Jan S. Hesthaven |
Publisher |
: Cambridge University Press |
Total Pages |
: 284 |
Release |
: 2007-01-11 |
ISBN-10 |
: 0521792118 |
ISBN-13 |
: 9780521792110 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Spectral Methods for Time-Dependent Problems by : Jan S. Hesthaven
Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.
Author |
: Jan S. Hesthaven |
Publisher |
: Cambridge University Press |
Total Pages |
: 4 |
Release |
: 2007-01-11 |
ISBN-10 |
: 9781139459525 |
ISBN-13 |
: 113945952X |
Rating |
: 4/5 (25 Downloads) |
Synopsis Spectral Methods for Time-Dependent Problems by : Jan S. Hesthaven
Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.
Author |
: John P. Boyd |
Publisher |
: Courier Corporation |
Total Pages |
: 690 |
Release |
: 2001-12-03 |
ISBN-10 |
: 9780486411835 |
ISBN-13 |
: 0486411834 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Chebyshev and Fourier Spectral Methods by : John P. Boyd
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Author |
: David A. Kopriva |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 397 |
Release |
: 2009-05-27 |
ISBN-10 |
: 9789048122615 |
ISBN-13 |
: 9048122619 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Implementing Spectral Methods for Partial Differential Equations by : David A. Kopriva
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Author |
: Bertil Gustafsson |
Publisher |
: John Wiley & Sons |
Total Pages |
: 464 |
Release |
: 2013-07-18 |
ISBN-10 |
: 9781118548523 |
ISBN-13 |
: 1118548523 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Time-Dependent Problems and Difference Methods by : Bertil Gustafsson
Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.
Author |
: Lloyd N. Trefethen |
Publisher |
: SIAM |
Total Pages |
: 179 |
Release |
: 2000-07-01 |
ISBN-10 |
: 9780898714654 |
ISBN-13 |
: 0898714656 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Spectral Methods in MATLAB by : Lloyd N. Trefethen
Mathematics of Computing -- Numerical Analysis.
Author |
: Jie Shen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 481 |
Release |
: 2011-08-25 |
ISBN-10 |
: 9783540710417 |
ISBN-13 |
: 3540710418 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Spectral Methods by : Jie Shen
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Author |
: Randall J. LeVeque |
Publisher |
: SIAM |
Total Pages |
: 356 |
Release |
: 2007-01-01 |
ISBN-10 |
: 0898717833 |
ISBN-13 |
: 9780898717839 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author |
: David Gottlieb |
Publisher |
: SIAM |
Total Pages |
: 167 |
Release |
: 1977-01-01 |
ISBN-10 |
: 9780898710236 |
ISBN-13 |
: 0898710235 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Numerical Analysis of Spectral Methods by : David Gottlieb
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Author |
: Olivier Le Maitre |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 542 |
Release |
: 2010-03-11 |
ISBN-10 |
: 9789048135202 |
ISBN-13 |
: 9048135206 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Spectral Methods for Uncertainty Quantification by : Olivier Le Maitre
This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.