Mathematical and Computational Approaches in Advancing Modern Science and Engineering

Mathematical and Computational Approaches in Advancing Modern Science and Engineering
Author :
Publisher : Springer
Total Pages : 777
Release :
ISBN-10 : 9783319303796
ISBN-13 : 3319303791
Rating : 4/5 (96 Downloads)

Synopsis Mathematical and Computational Approaches in Advancing Modern Science and Engineering by : Jacques Bélair

Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications. The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.

Mathematical Reviews

Mathematical Reviews
Author :
Publisher :
Total Pages : 962
Release :
ISBN-10 : UVA:X006180617
ISBN-13 :
Rating : 4/5 (17 Downloads)

Synopsis Mathematical Reviews by :

A Guide to Spectral Theory

A Guide to Spectral Theory
Author :
Publisher : Springer Nature
Total Pages : 258
Release :
ISBN-10 : 9783030674625
ISBN-13 : 3030674622
Rating : 4/5 (25 Downloads)

Synopsis A Guide to Spectral Theory by : Christophe Cheverry

This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.

A Course in Functional Analysis

A Course in Functional Analysis
Author :
Publisher : Springer
Total Pages : 416
Release :
ISBN-10 : 9781475743838
ISBN-13 : 1475743831
Rating : 4/5 (38 Downloads)

Synopsis A Course in Functional Analysis by : John B Conway

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS

Stochastic Processes and Applications

Stochastic Processes and Applications
Author :
Publisher : Springer
Total Pages : 345
Release :
ISBN-10 : 9781493913237
ISBN-13 : 1493913239
Rating : 4/5 (37 Downloads)

Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Analysis and Geometry of Markov Diffusion Operators

Analysis and Geometry of Markov Diffusion Operators
Author :
Publisher : Springer Science & Business Media
Total Pages : 555
Release :
ISBN-10 : 9783319002279
ISBN-13 : 3319002279
Rating : 4/5 (79 Downloads)

Synopsis Analysis and Geometry of Markov Diffusion Operators by : Dominique Bakry

The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

Theory of Markov Processes

Theory of Markov Processes
Author :
Publisher : Courier Corporation
Total Pages : 226
Release :
ISBN-10 : 9780486453057
ISBN-13 : 0486453057
Rating : 4/5 (57 Downloads)

Synopsis Theory of Markov Processes by : Evgeniĭ Borisovich Dynkin

An investigation of the logical foundations of the theory behind Markov random processes, this text explores subprocesses, transition functions, and conditions for boundedness and continuity. Rather than focusing on probability measures individually, the work explores connections between functions. An elementary grasp of the theory of Markov processes is assumed. Starting with a brief survey of relevant concepts and theorems from measure theory, the text investigates operations that permit an inspection of the class of Markov processes corresponding to a given transition function. It advances to the more complicated operations of generating a subprocess, followed by examinations of the construction of Markov processes with given transition functions, the concept of a strictly "Markov process," and the conditions required for boundedness and continuity of a Markov process. Addenda, notes, references, and indexes supplement the text.

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications
Author :
Publisher : CRC Press
Total Pages : 384
Release :
ISBN-10 : 9780203998069
ISBN-13 : 0203998065
Rating : 4/5 (69 Downloads)

Synopsis Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications by : Victor A. Galaktionov

Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un

Selfsimilar Processes

Selfsimilar Processes
Author :
Publisher : Princeton University Press
Total Pages : 125
Release :
ISBN-10 : 9781400825103
ISBN-13 : 1400825105
Rating : 4/5 (03 Downloads)

Synopsis Selfsimilar Processes by : Paul Embrechts

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications. After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications. Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.