Some Mathematical Models From Population Genetics
Download Some Mathematical Models From Population Genetics full books in PDF, epub, and Kindle. Read online free Some Mathematical Models From Population Genetics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alison Etheridge |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 129 |
Release |
: 2011-01-07 |
ISBN-10 |
: 9783642166310 |
ISBN-13 |
: 3642166318 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Some Mathematical Models from Population Genetics by : Alison Etheridge
This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Author |
: David J. Balding |
Publisher |
: John Wiley & Sons |
Total Pages |
: 1740 |
Release |
: 2019-07-09 |
ISBN-10 |
: 9781119429258 |
ISBN-13 |
: 1119429250 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Handbook of Statistical Genomics by : David J. Balding
A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.
Author |
: Marius Ghergu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 402 |
Release |
: 2011-10-21 |
ISBN-10 |
: 9783642226649 |
ISBN-13 |
: 3642226647 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Nonlinear PDEs by : Marius Ghergu
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Author |
: Warren J. Ewens |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 448 |
Release |
: 2004-01-09 |
ISBN-10 |
: 0387201912 |
ISBN-13 |
: 9780387201917 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Mathematical Population Genetics 1 by : Warren J. Ewens
This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
Author |
: Thomas Nagylaki |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 381 |
Release |
: 2013-03-12 |
ISBN-10 |
: 9783642762147 |
ISBN-13 |
: 364276214X |
Rating |
: 4/5 (47 Downloads) |
Synopsis Introduction to Theoretical Population Genetics by : Thomas Nagylaki
This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).
Author |
: Yuri I. Lyubich |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2011-12-14 |
ISBN-10 |
: 3642762131 |
ISBN-13 |
: 9783642762130 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Mathematical Structures in Population Genetics by : Yuri I. Lyubich
Mathematical methods have been applied successfully to population genet ics for a long time. Even the quite elementary ideas used initially proved amazingly effective. For example, the famous Hardy-Weinberg Law (1908) is basic to many calculations in population genetics. The mathematics in the classical works of Fisher, Haldane and Wright was also not very complicated but was of great help for the theoretical understanding of evolutionary pro cesses. More recently, the methods of mathematical genetics have become more sophisticated. In use are probability theory, stochastic processes, non linear differential and difference equations and nonassociative algebras. First contacts with topology have been established. Now in addition to the tra ditional movement of mathematics for genetics, inspiration is flowing in the opposite direction, yielding mathematics from genetics. The present mono grapll reflects to some degree both patterns but especially the latter one. A pioneer of this synthesis was S. N. Bernstein. He raised-and partially solved- -the problem of characterizing all stationary evolutionary operators, and this work was continued by the author in a series of papers (1971-1979). This problem has not been completely solved, but it appears that only cer tain operators devoid of any biological significance remain to be addressed. The results of these studies appear in chapters 4 and 5. The necessary alge braic preliminaries are described in chapter 3 after some elementary models in chapter 2.
Author |
: J.S. Gale |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 428 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9789400903876 |
ISBN-13 |
: 9400903871 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Theoretical Population Genetics by : J.S. Gale
The rise of the neutral theory of molecular evolution seems to have aroused a renewed interest in mathematical population genetics among biologists, who are primarily experimenters rather than theoreticians. This has encouraged me to set out the mathematics of the evolutionary process in a manner that, I hope, will be comprehensible to those with only a basic knowledge of calculus and matrix algebra. I must acknowledge from the start my great debt to my students. Equipped initially with rather limited mathematics, they have pursued the subject with much enthusiasm and success. This has enabled me to try a number of different approaches over the years. I was particularly grateful to Dr L. J. Eaves and Professor W. E. Nance for the opportunity to give a one-semester course at the Medical College of Virginia, and I would like to thank them, their colleagues and their students for the many kindnesses shown to me during my visit. I have concentrated almost entirely on stochastic topics, since these cause the greatest problems for non-mathematicians. The latter are particularly concerned with the range of validity of formulae. A sense of confidence in applying these formulae is, almost certainly, best gained by following their derivation. I have set out proofs in fair detail, since, in my experience, minor points of algebraic manipulation occasionally cause problems. To avoid loss of continuity, I have sometimes put material in notes at the end of chapters.
Author |
: Julian Hofrichter |
Publisher |
: Springer |
Total Pages |
: 323 |
Release |
: 2017-02-23 |
ISBN-10 |
: 9783319520452 |
ISBN-13 |
: 3319520458 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Information Geometry and Population Genetics by : Julian Hofrichter
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Author |
: Leah Edelstein-Keshet |
Publisher |
: SIAM |
Total Pages |
: 629 |
Release |
: 1988-01-01 |
ISBN-10 |
: 0898719143 |
ISBN-13 |
: 9780898719147 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Mathematical Models in Biology by : Leah Edelstein-Keshet
Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.
Author |
: Alan Hastings |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 228 |
Release |
: 2013-03-14 |
ISBN-10 |
: 9781475727319 |
ISBN-13 |
: 1475727313 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Population Biology by : Alan Hastings
Population biology has been investigated quantitatively for many decades, resulting in a rich body of scientific literature. Ecologists often avoid this literature, put off by its apparently formidable mathematics. This textbook provides an introduction to the biology and ecology of populations by emphasizing the roles of simple mathematical models in explaining the growth and behavior of populations. The author only assumes acquaintance with elementary calculus, and provides tutorial explanations where needed to develop mathematical concepts. Examples, problems, extensive marginal notes and numerous graphs enhance the book's value to students in classes ranging from population biology and population ecology to mathematical biology and mathematical ecology. The book will also be useful as a supplement to introductory courses in ecology.