Silicon-germanium BiCMOS and Silicon-on-insulator CMOS Analog Circuits for Extreme Environment Applications

Silicon-germanium BiCMOS and Silicon-on-insulator CMOS Analog Circuits for Extreme Environment Applications
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:893213692
ISBN-13 :
Rating : 4/5 (92 Downloads)

Synopsis Silicon-germanium BiCMOS and Silicon-on-insulator CMOS Analog Circuits for Extreme Environment Applications by : Troy Daniel England

Extreme environments pose major obstacles for electronics in the form of extremely wide temperature ranges and hazardous radiation. The most common mitigation procedures involve extensive shielding and temperature control or complete displacement from the environment with high costs in weight, power, volume, and performance. There has been a shift away from these solutions and towards distributed, in-environment electronic systems. However, for this methodology to be viable, the requirements of heavy radiation shielding and temperature control have to be lessened or eliminated. This work gained new understanding of the best practices in analog circuit design for extreme environments. Major accomplishments included the over-temperature -180 C to +120 C and radiation validation of the SiGe Remote Electronics Unit, a first of its kind, 16 channel, sensor interface for unshielded operation in the Lunar environment, the design of two wide-temperature ( -180 C to +120 C), total-ionizing-dose hardened, wireline transceivers for the Lunar environment, the low-frequency-noise characterization of a second-generation BiCMOS process from 300 K down to 90 K, the explanation of the physical mechanisms behind the single-event transient response of cascode structures in a 45 nm, SOI, radio-frequency, CMOS technology, the analysis of the single-event transient response of differential structures in a 32 nm, SOI, RF, CMOS technology, and the prediction of scaling trends of single-event effects in SOI CMOS technologies.

Design of Analog Circuits for Extreme Environment Applications

Design of Analog Circuits for Extreme Environment Applications
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:642354611
ISBN-13 :
Rating : 4/5 (11 Downloads)

Synopsis Design of Analog Circuits for Extreme Environment Applications by : Laleh Najafizadeh

This work investigates the challenges associated with designing silicon-germanium (SiGe) analog and mixed-signal circuits capable of operating reliably in extreme environment conditions. Three extreme environment operational conditions, namely, operation over an extremely wide temperature range, operation at extremely low temperatures, and operation under radiation exposure, are considered. As a representative for critical analog building blocks, bandgap voltage reference (BGR) circuit is chosen. Several architectures of the BGRs are implemented in two SiGe BiCMOS technology platforms. The effects of wide-temperature operation, deep cryogenic operation, and proton and x-ray irradiation on the performance of BGRs are investigated. The impact of Ge profile shape on BGR's wide-temperature performance is also addressed. Single-event transient response of the BGR circuit is studied through microbeam experiments. In addition, proton radiation response of high-voltage transistors, implemented in a low-voltage SiGe platform, is investigated. A platform consisting of a high-speed comparator, digital-to-analog (DAC) converter, and a high-speed flash analog-to-digital (ADC) converter is designed to facilitate the evaluation of the extreme environment capabilities of SiGe data converters. Room temperature measurement results are presented and predictions on how temperature and radiation will impact their key electrical properties are provided.

Silicon Germanium

Silicon Germanium
Author :
Publisher : John Wiley & Sons
Total Pages : 368
Release :
ISBN-10 : 9780471660910
ISBN-13 : 0471660914
Rating : 4/5 (10 Downloads)

Synopsis Silicon Germanium by : Raminderpal Singh

"An excellent introduction to the SiGe BiCMOS technology, from the underlying device physics to current applications." -Ron Wilson, EETimes "SiGe technology has demonstrated the ability to provide excellent high-performance characteristics with very low noise, at high power gain, and with excellent linearity. This book is a comprehensive review of the technology and of the design methods that go with it." -Alberto Sangiovanni-Vincentelli Professor, University of California, Berkeley Cofounder, Chief Technology Officer, Member of Board Cadence Design Systems Inc. Filled with in-depth insights and expert advice, Silicon Germanium covers all the key aspects of this technology and its applications. Beginning with a brief introduction to and historical perspective of IBM's SiGe technology, this comprehensive guide quickly moves on to: * Detail many of IBM's SiGe technology development programs * Explore IBM's approach to device modeling and characterization-including predictive TCAD modeling * Discuss IBM's design automation and signal integrity knowledge and implementation methodologies * Illustrate design applications in a variety of IBM's SiGe technologies * Highlight details of highly integrated SiGe BiCMOS system-on-chip (SOC) design Written for RF/analog and mixed-signal designers, CAD designers, semiconductor students, and foundry process engineers worldwide, Silicon Germanium provides detailed insight into the modeling and design automation requirements for leading-edge RF/analog and mixed-signal products, and illustrates in-depth applications that can be implemented using IBM's advanced SiGe process technologies and design kits. "This volume provides an excellent introduction to the SiGe BiCMOS technology, from the underlying device physics to current applications. But just as important is the window the text provides into the infrastructure-the process development, device modeling, and tool development." -Ron Wilson Silicon Engineering Editor, EETimes "This book chronicles the development of SiGe in detail, provides an in-depth look at the modeling and design automation requirements for making advanced applications using SiGe possible, and illustrates such applications as implemented using IBM's process technologies and design methods." -John Kelly Senior Vice President and Group Executive, Technology Group, IBM

Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment

Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment
Author :
Publisher : Springer Science & Business Media
Total Pages : 358
Release :
ISBN-10 : 9781402030130
ISBN-13 : 1402030134
Rating : 4/5 (30 Downloads)

Synopsis Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment by : Denis Flandre

This proceedings volume archives the contributions of the speakers who attended the NATO Advanced Research Workshop on “Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment” held at the Sanatorium Puscha Ozerna, th th Kyiv, Ukraine, from 25 to 29 April 2004. The semiconductor industry has maintained a very rapid growth during the last three decades through impressive technological achievements which have resulted in products with higher performance and lower cost per function. After many years of development semiconductor-on-insulator materials have entered volume production and will increasingly be used by the manufacturing industry. The wider use of semiconductor (especially silicon) on insulator materials will not only enable the benefits of these materials to be further demonstrated but, also, will drive down the cost of substrates which, in turn, will stimulate the development of other novel devices and applications. In itself this trend will encourage the promotion of the skills and ideas generated by researchers in the Former Soviet Union and Eastern Europe and their incorporation in future collaborations.

Silicon-germanium Devices and Circuits for High Temperature Applications

Silicon-germanium Devices and Circuits for High Temperature Applications
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:668111696
ISBN-13 :
Rating : 4/5 (96 Downloads)

Synopsis Silicon-germanium Devices and Circuits for High Temperature Applications by : Dylan Buxton Thomas

Using bandgap engineering, silicon-germanium (SiGe) BiCMOS technology effectively combines III-V transistor performance with the cost and integration advantages associated with CMOS manufacturing. The suitability of SiGe technology for cryogenic and radiation-intense environments is well known, yet SiGe has been generally overlooked for applications involving extreme high temperature operation. This work is an investigation into the potential capabilities of SiGe technology for operation up to 300°C, including the development of packaging and testing procedures to enable the necessary measurements. At the device level, SiGe heterojunction bipolar transistors (HBTs), field-effect transistors (FETs), and resistors are verified to maintain acceptable functionality across the temperature range, laying the foundation for high temperature circuit design. This work also includes the characterization of existing bandgap references circuits, redesign for high temperature operation, validation, and further optimization recommendations. In addition, the performance of temperature sensor, operational amplifier, and output buffer circuits under extreme high temperature conditions is presented. To the author's knowledge, this work represents the first demonstration of functional circuits from a SiGe technology platform in ambient temperatures up to 300°C; furthermore, the optimized bandgap reference presented in this work is believed to show the best performance recorded across a 500°C range in a bulk-silicon technology platform.

Silicon-germanium Devices and Circuits for Cryogenic and High-radiation Space Environments

Silicon-germanium Devices and Circuits for Cryogenic and High-radiation Space Environments
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:668111672
ISBN-13 :
Rating : 4/5 (72 Downloads)

Synopsis Silicon-germanium Devices and Circuits for Cryogenic and High-radiation Space Environments by : Edward Wilcox

This work represents several years' research into the field of radiation hardening by design. The unique characteristics of a SiGe HBT, described in Chapter 1, make it ideally suitable for use in extreme environment applications. Chapter 2 describes the total ionizing dose effects experienced by a SiGe HBT, particularly those experienced on an Earth-orbital or lunar-surface mission. In addition, the effects of total dose are evaluated on passive devices. As opposed to the TID-hardness of SiGe transistors, a clear vulnerability to single-event effects does exist. This field is divided into three chapters. First, the very nature of single-event transients present in SiGe HBTs is explored in Chapter 3 using a heavy-ion microbeam with both bulk and SOI platforms [31]. Then, in Chapter 4, a new device-level SEU-hardening technique is presented along with circuit-design techniques necessarily for its implementation. In Chapter 5, the circuit-level radiation-hardening techniques necessarily to mitigate the effects shown in Chapter 3 are developed and tested [32]. Finally, in Chapter 6, the performance of the SiGe HBT in a cryogenic testing environment is characterized to understand how the widely-varying temperatures of outer space may affect device performance. Ultimately, the built-in performance, TID-tolerance, and now-developing SEU-hardness of the SiGe HBT make a compelling case for extreme environment electronics. The low-cost, high-yield, and maturity of Si manufacturing combine with modern bandgap engineering and modern CMOS to produce a high-quality, high-performance BiCMOS platform suitable for space-borne systems.

Applications of Silicon-Germanium Heterostructure Devices

Applications of Silicon-Germanium Heterostructure Devices
Author :
Publisher : CRC Press
Total Pages : 402
Release :
ISBN-10 : 9781420034691
ISBN-13 : 1420034693
Rating : 4/5 (91 Downloads)

Synopsis Applications of Silicon-Germanium Heterostructure Devices by : C.K Maiti

The first book to deal with the design and optimization of transistors made from strained layers, Applications of Silicon-Germanium Heterostructure Devices combines three distinct topics-technology, device design and simulation, and applications-in a comprehensive way. Important aspects of the book include key technology issues for the growth of st

ESD in Silicon Integrated Circuits

ESD in Silicon Integrated Circuits
Author :
Publisher : John Wiley & Sons
Total Pages : 434
Release :
ISBN-10 : UOM:39015054391290
ISBN-13 :
Rating : 4/5 (90 Downloads)

Synopsis ESD in Silicon Integrated Circuits by : E. Ajith Amerasekera

* Examines the various methods available for circuit protection, including coverage of the newly developed ESD circuit protection schemes for VLSI circuits. * Provides guidance on the implementation of circuit protection measures. * Includes new sections on ESD design rules, layout approaches, package effects, and circuit concepts. * Reviews the new Charged Device Model (CDM) test method and evaluates design requirements necessary for circuit protection.

SiGe Heterojunction Bipolar Transistors

SiGe Heterojunction Bipolar Transistors
Author :
Publisher : John Wiley & Sons
Total Pages : 286
Release :
ISBN-10 : 9780470090732
ISBN-13 : 0470090731
Rating : 4/5 (32 Downloads)

Synopsis SiGe Heterojunction Bipolar Transistors by : Peter Ashburn

SiGe HBTs is a hot topic within the microelectronics community because of its applications potential within integrated circuits operating at radio frequencies. Applications range from high speed optical networking to wireless communication devices. The addition of germanium to silicon technologies to form silicon germanium (SiGe) devices has created a revolution in the semiconductor industry. These transistors form the enabling devices in a wide range of products for wireless and wired communications. This book features: SiGe products include chip sets for wireless cellular handsets as well as WLAN and high-speed wired network applications Describes the physics and technology of SiGe HBTs, with coverage of Si and Ge bipolar transistors Written with the practising engineer in mind, this book explains the operating principles and applications of bipolar transistor technology. Essential reading for practising microelectronics engineers and researchers. Also, optical communications engineers and communication technology engineers. An ideal reference tool for masters level students in microelectronics and electronics engineering.