Semiconductor Nanostructures For Optoelectronic Applications
Download Semiconductor Nanostructures For Optoelectronic Applications full books in PDF, epub, and Kindle. Read online free Semiconductor Nanostructures For Optoelectronic Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gyu-Chul Yi |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 347 |
Release |
: 2012-01-13 |
ISBN-10 |
: 9783642224805 |
ISBN-13 |
: 3642224806 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Semiconductor Nanostructures for Optoelectronic Devices by : Gyu-Chul Yi
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
Author |
: Todd D. Steiner |
Publisher |
: Artech House |
Total Pages |
: 438 |
Release |
: 2004 |
ISBN-10 |
: 1580537529 |
ISBN-13 |
: 9781580537520 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Semiconductor Nanostructures for Optoelectronic Applications by : Todd D. Steiner
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Author |
: Giovanni Agostini |
Publisher |
: Elsevier |
Total Pages |
: 501 |
Release |
: 2011-08-11 |
ISBN-10 |
: 9780080558158 |
ISBN-13 |
: 0080558151 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Characterization of Semiconductor Heterostructures and Nanostructures by : Giovanni Agostini
In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Author |
: Dieter Bimberg |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 369 |
Release |
: 2008-06-03 |
ISBN-10 |
: 9783540778998 |
ISBN-13 |
: 3540778993 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Semiconductor Nanostructures by : Dieter Bimberg
Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the world.
Author |
: Eckehard Schöll |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 394 |
Release |
: 2013-11-27 |
ISBN-10 |
: 9781461558071 |
ISBN-13 |
: 1461558077 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Theory of Transport Properties of Semiconductor Nanostructures by : Eckehard Schöll
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.
Author |
: Tianyou Zhai |
Publisher |
: John Wiley & Sons |
Total Pages |
: 857 |
Release |
: 2012-10-19 |
ISBN-10 |
: 9781118310366 |
ISBN-13 |
: 1118310365 |
Rating |
: 4/5 (66 Downloads) |
Synopsis One-Dimensional Nanostructures by : Tianyou Zhai
Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.
Author |
: Nobuyoshi Koshida |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 350 |
Release |
: 2008-12-11 |
ISBN-10 |
: 9780387786896 |
ISBN-13 |
: 0387786899 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Device Applications of Silicon Nanocrystals and Nanostructures by : Nobuyoshi Koshida
Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.
Author |
: |
Publisher |
: Academic Press |
Total Pages |
: 401 |
Release |
: 1974-11-29 |
ISBN-10 |
: 9780080864938 |
ISBN-13 |
: 0080864937 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Solid State Physics by :
Solid State Physics
Author |
: Marius Grundmann |
Publisher |
: Springer Nature |
Total Pages |
: 905 |
Release |
: 2021-03-06 |
ISBN-10 |
: 9783030515690 |
ISBN-13 |
: 3030515699 |
Rating |
: 4/5 (90 Downloads) |
Synopsis The Physics of Semiconductors by : Marius Grundmann
The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.
Author |
: J Arbiol |
Publisher |
: Elsevier |
Total Pages |
: 573 |
Release |
: 2015-03-31 |
ISBN-10 |
: 9781782422631 |
ISBN-13 |
: 1782422633 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Semiconductor Nanowires by : J Arbiol
Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. - Explores a selection of advanced materials for semiconductor nanowires - Outlines key techniques for the property assessment and characterization of semiconductor nanowires - Covers a broad range of applications across a number of fields