Quantum Algorithms via Linear Algebra

Quantum Algorithms via Linear Algebra
Author :
Publisher : MIT Press
Total Pages : 207
Release :
ISBN-10 : 9780262028394
ISBN-13 : 0262028395
Rating : 4/5 (94 Downloads)

Synopsis Quantum Algorithms via Linear Algebra by : Richard J. Lipton

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.

Quantum Algorithms via Linear Algebra

Quantum Algorithms via Linear Algebra
Author :
Publisher : MIT Press
Total Pages : 207
Release :
ISBN-10 : 9780262323574
ISBN-13 : 0262323575
Rating : 4/5 (74 Downloads)

Synopsis Quantum Algorithms via Linear Algebra by : Richard J. Lipton

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.

Introduction to Quantum Algorithms via Linear Algebra, second edition

Introduction to Quantum Algorithms via Linear Algebra, second edition
Author :
Publisher : MIT Press
Total Pages : 281
Release :
ISBN-10 : 9780262045254
ISBN-13 : 0262045257
Rating : 4/5 (54 Downloads)

Synopsis Introduction to Quantum Algorithms via Linear Algebra, second edition by : Richard J. Lipton

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.

Introduction to Quantum Algorithms via Linear Algebra, second edition

Introduction to Quantum Algorithms via Linear Algebra, second edition
Author :
Publisher : MIT Press
Total Pages : 281
Release :
ISBN-10 : 9780262362153
ISBN-13 : 0262362155
Rating : 4/5 (53 Downloads)

Synopsis Introduction to Quantum Algorithms via Linear Algebra, second edition by : Richard J. Lipton

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.

Classical and Quantum Computation

Classical and Quantum Computation
Author :
Publisher : American Mathematical Soc.
Total Pages : 274
Release :
ISBN-10 : 9780821832295
ISBN-13 : 0821832298
Rating : 4/5 (95 Downloads)

Synopsis Classical and Quantum Computation by : Alexei Yu. Kitaev

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.

An Introduction to Quantum Computing

An Introduction to Quantum Computing
Author :
Publisher : Oxford University Press
Total Pages : 287
Release :
ISBN-10 : 9780198570004
ISBN-13 : 0198570007
Rating : 4/5 (04 Downloads)

Synopsis An Introduction to Quantum Computing by : Phillip Kaye

The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

A Mathematical Introduction to Electronic Structure Theory

A Mathematical Introduction to Electronic Structure Theory
Author :
Publisher : SIAM
Total Pages : 138
Release :
ISBN-10 : 9781611975802
ISBN-13 : 1611975808
Rating : 4/5 (02 Downloads)

Synopsis A Mathematical Introduction to Electronic Structure Theory by : Lin Lin

Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.

Quantum Computing

Quantum Computing
Author :
Publisher : CRC Press
Total Pages : 439
Release :
ISBN-10 : 9781420012293
ISBN-13 : 1420012290
Rating : 4/5 (93 Downloads)

Synopsis Quantum Computing by : Mikio Nakahara

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect

Quantum Information

Quantum Information
Author :
Publisher : Springer Science & Business Media
Total Pages : 291
Release :
ISBN-10 : 9780387369440
ISBN-13 : 0387369449
Rating : 4/5 (40 Downloads)

Synopsis Quantum Information by : Gregg Jaeger

This book gives an overview for practitioners and students of quantum physics and information science. It provides ready access to essential information on quantum information processing and communication, such as definitions, protocols and algorithms. Quantum information science is rarely found in clear and concise form. This book brings together this information from its various sources. It allows researchers and students in a range of areas including physics, photonics, solid-state electronics, nuclear magnetic resonance and information technology, in their applied and theoretical branches, to have this vital material directly at hand.

Quantum Computing

Quantum Computing
Author :
Publisher : National Academies Press
Total Pages : 273
Release :
ISBN-10 : 9780309479691
ISBN-13 : 030947969X
Rating : 4/5 (91 Downloads)

Synopsis Quantum Computing by : National Academies of Sciences, Engineering, and Medicine

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.