Principles Of Strategic Data Science
Download Principles Of Strategic Data Science full books in PDF, epub, and Kindle. Read online free Principles Of Strategic Data Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dr Peter Prevos |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 104 |
Release |
: 2019-06-03 |
ISBN-10 |
: 9781838985509 |
ISBN-13 |
: 1838985506 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Principles of Strategic Data Science by : Dr Peter Prevos
Take the strategic and systematic approach to analyze data to solve business problems Key FeaturesGain detailed information about the theory of data scienceAugment your coding knowledge with practical data science techniques for efficient data analysis Learn practical ways to strategically and systematically use dataBook Description Principles of Strategic Data Science is created to help you join the dots between mathematics, programming, and business analysis. With a unique approach that bridges the gap between mathematics and computer science, this book takes you through the entire data science pipeline. The book begins by explaining what data science is and how organizations can use it to revolutionize the way they use their data. It then discusses the criteria for the soundness of data products and how to best visualize information. As you progress, you’ll discover the strategic aspects of data science by learning the five-phase framework that enables you to enhance the value you extract from data. The final chapter of the book discusses the role of a data science manager in helping an organization take the data-driven approach. By the end of this book, you’ll have a good understanding of data science and how it can enable you to extract value from your data. What you will learnGet familiar with the five most important steps of data scienceUse the Conway diagram to visualize the technical skills of the data science teamUnderstand the limitations of data science from a mathematical and ethical perspectiveGet a quick overview of machine learningGain insight into the purpose of using data science in your workUnderstand the role of data science managers and their expectationsWho this book is for This book is ideal for data scientists and data analysts who are looking for a practical guide to strategically and systematically use data. This book is also useful for those who want to understand in detail what is data science and how can an organization take the data-driven approach. Prior programming knowledge of Python and R is assumed.
Author |
: Foster Provost |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 506 |
Release |
: 2013-07-27 |
ISBN-10 |
: 9781449374280 |
ISBN-13 |
: 144937428X |
Rating |
: 4/5 (80 Downloads) |
Synopsis Data Science for Business by : Foster Provost
Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
Author |
: Ulrika Jägare |
Publisher |
: John Wiley & Sons |
Total Pages |
: 423 |
Release |
: 2019-06-12 |
ISBN-10 |
: 9781119566274 |
ISBN-13 |
: 1119566274 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Data Science Strategy For Dummies by : Ulrika Jägare
All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
Author |
: Steven S. Skiena |
Publisher |
: Springer |
Total Pages |
: 456 |
Release |
: 2017-07-01 |
ISBN-10 |
: 9783319554440 |
ISBN-13 |
: 3319554441 |
Rating |
: 4/5 (40 Downloads) |
Synopsis The Data Science Design Manual by : Steven S. Skiena
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
Author |
: Ryan A. Estrellado |
Publisher |
: Routledge |
Total Pages |
: 315 |
Release |
: 2020-10-26 |
ISBN-10 |
: 9781000200904 |
ISBN-13 |
: 1000200906 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Data Science in Education Using R by : Ryan A. Estrellado
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Author |
: John D. Kelleher |
Publisher |
: MIT Press |
Total Pages |
: 282 |
Release |
: 2018-04-13 |
ISBN-10 |
: 9780262535434 |
ISBN-13 |
: 0262535432 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Data Science by : John D. Kelleher
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Author |
: Peter Prevos |
Publisher |
: CRC Press |
Total Pages |
: 212 |
Release |
: 2023-05-10 |
ISBN-10 |
: 9781000856477 |
ISBN-13 |
: 100085647X |
Rating |
: 4/5 (77 Downloads) |
Synopsis Data Science for Water Utilities by : Peter Prevos
This addition to the Data Science Series introduces the principles of data science and the R language to the singular needs of water professionals. The book provides unique data and examples relevant to managing water utility and is sourced from the author’s extensive experience. Data Science for Water Utilities: Data as a Source of Value is an applied, practical guide that shows water professionals how to use data science to solve urban water management problems. Content develops through four case studies. The first looks at analysing water quality to ensure public health. The second considers customer feedback. The third case study introduces smart meter data. The guide flows easily from basic principles through code that, with each case study, increases in complexity. The last case study analyses data using basic machine learning. Readers will be familiar with analysing data but do not need coding experience to use this book. The title will be essential reading for anyone seeking a practical introduction to data science and creating value with R.
Author |
: Angelica Lo Duca |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 402 |
Release |
: 2022-08-26 |
ISBN-10 |
: 9781801814355 |
ISBN-13 |
: 180181435X |
Rating |
: 4/5 (55 Downloads) |
Synopsis Comet for Data Science by : Angelica Lo Duca
Gain the key knowledge and skills required to manage data science projects using Comet Key Features • Discover techniques to build, monitor, and optimize your data science projects • Move from prototyping to production using Comet and DevOps tools • Get to grips with the Comet experimentation platform Book Description This book provides concepts and practical use cases which can be used to quickly build, monitor, and optimize data science projects. Using Comet, you will learn how to manage almost every step of the data science process from data collection through to creating, deploying, and monitoring a machine learning model. The book starts by explaining the features of Comet, along with exploratory data analysis and model evaluation in Comet. You'll see how Comet gives you the freedom to choose from a selection of programming languages, depending on which is best suited to your needs. Next, you will focus on workspaces, projects, experiments, and models. You will also learn how to build a narrative from your data, using the features provided by Comet. Later, you will review the basic concepts behind DevOps and how to extend the GitLab DevOps platform with Comet, further enhancing your ability to deploy your data science projects. Finally, you will cover various use cases of Comet in machine learning, NLP, deep learning, and time series analysis, gaining hands-on experience with some of the most interesting and valuable data science techniques available. By the end of this book, you will be able to confidently build data science pipelines according to bespoke specifications and manage them through Comet. What you will learn • Prepare for your project with the right data • Understand the purposes of different machine learning algorithms • Get up and running with Comet to manage and monitor your pipelines • Understand how Comet works and how to get the most out of it • See how you can use Comet for machine learning • Discover how to integrate Comet with GitLab • Work with Comet for NLP, deep learning, and time series analysis Who this book is for This book is for anyone who has programming experience, and wants to learn how to manage and optimize a complete data science lifecycle using Comet and other DevOps platforms. Although an understanding of basic data science concepts and programming concepts is needed, no prior knowledge of Comet and DevOps is required.
Author |
: Ulrika Jägare |
Publisher |
: John Wiley & Sons |
Total Pages |
: 356 |
Release |
: 2019-06-10 |
ISBN-10 |
: 9781119566267 |
ISBN-13 |
: 1119566266 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Data Science Strategy For Dummies by : Ulrika Jägare
All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
Author |
: Reinoud Bosch |
Publisher |
: Routledge |
Total Pages |
: 141 |
Release |
: 2021-12-26 |
ISBN-10 |
: 9781000532609 |
ISBN-13 |
: 1000532607 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Power by : Reinoud Bosch
Power plays a central role in business and management. But what is power exactly, and what are key elements of this concept? Defining power as relative ability, this book discusses structures of power, individual power, the exercise of power, strategy, and collective power. While discussing these key components, ideas of important thinkers about power, from Plato to Foucault, Weber to Lukes, Machiavelli to Kahneman, Sun to Kotter, and Barnard to Clegg, are discussed and interpretively categorized into a toolbox of conceptual elements – what Blumer referred to as sensitizing concepts. This toolbox of sensitizing concepts allows the selection of those elements of the concept of power that provide the most constructive and effective practical understanding in particular situations. The core message behind the discussion is that knowledge of key components of the concept of power is empowering. It is empowering to learn about aspects of structures of power, individual power, the exercise of power, strategy, and collective power. Understanding such conceptual components empowers students, researchers, practitioners, and other readers to use their understanding in interpreting, theorizing about, and dealing with the complexities of power in their particular situations – without tying them to any preconceived general theories about power.