Predictive Analytics in Smart Agriculture

Predictive Analytics in Smart Agriculture
Author :
Publisher : CRC Press
Total Pages : 386
Release :
ISBN-10 : 9781000991482
ISBN-13 : 1000991482
Rating : 4/5 (82 Downloads)

Synopsis Predictive Analytics in Smart Agriculture by : Saravanan Krishnan

Predictive Analysis in Smart Agricultureexplores computational engineering techniques and applications in agriculture development. Recent technologies such as cloud computing, IoT, big data, and machine learning are focused on for smart agricultural engineering. The book also provides a case-oriented approach for IoT-based agricultural systems. This book deals with all aspects of smart agriculture with state-of-the-art predictive analysis in the complete 360-degree view spectrum. The book includes the concepts of urban and vertical farming using Agro IoT systems and renewable energy sources for modern agriculture trends. It discusses the real-world challenges, complexities in Agro IoT, and advantages of incorporating smart technology. It also presents the rapid advancement of the technologies in the existing Agri model by applying the various techniques. Novel architectural solutions in smart agricultural engineering are the core aspects of this book. Several predictive analysis tools and smart agriculture are also incorporated. This book can be used as a textbook for students in predictive analysis, agriculture engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in cloud computing, IoT, big data, machine learning, and deep learning working on smart agriculture applications.

Predictive Analytics in Smart Agriculture

Predictive Analytics in Smart Agriculture
Author :
Publisher : CRC Press
Total Pages : 312
Release :
ISBN-10 : 9781000991475
ISBN-13 : 1000991474
Rating : 4/5 (75 Downloads)

Synopsis Predictive Analytics in Smart Agriculture by : Saravanan Krishnan

Predictive Analysis in Smart Agricultureexplores computational engineering techniques and applications in agriculture development. Recent technologies such as cloud computing, IoT, big data, and machine learning are focused on for smart agricultural engineering. The book also provides a case-oriented approach for IoT-based agricultural systems. This book deals with all aspects of smart agriculture with state-of-the-art predictive analysis in the complete 360-degree view spectrum. The book includes the concepts of urban and vertical farming using Agro IoT systems and renewable energy sources for modern agriculture trends. It discusses the real-world challenges, complexities in Agro IoT, and advantages of incorporating smart technology. It also presents the rapid advancement of the technologies in the existing Agri model by applying the various techniques. Novel architectural solutions in smart agricultural engineering are the core aspects of this book. Several predictive analysis tools and smart agriculture are also incorporated. This book can be used as a textbook for students in predictive analysis, agriculture engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in cloud computing, IoT, big data, machine learning, and deep learning working on smart agriculture applications.

Smart Agriculture

Smart Agriculture
Author :
Publisher : CRC Press
Total Pages : 222
Release :
ISBN-10 : 9781000327878
ISBN-13 : 1000327876
Rating : 4/5 (78 Downloads)

Synopsis Smart Agriculture by : Govind Singh Patel

This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.

IoT and Analytics for Agriculture

IoT and Analytics for Agriculture
Author :
Publisher : Springer Nature
Total Pages : 250
Release :
ISBN-10 : 9789811391774
ISBN-13 : 9811391777
Rating : 4/5 (74 Downloads)

Synopsis IoT and Analytics for Agriculture by : Prasant Kumar Pattnaik

This book presents recent findings on virtually every aspect of wireless IoT and analytics for agriculture. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. In turn, it addresses the latest innovations, trends, and concerns, as well as practical challenges encountered and solutions adopted in the fields of IoT and analytics for agriculture. In closing, it explores a range of applications, including: intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems.

AI, Edge and IoT-based Smart Agriculture

AI, Edge and IoT-based Smart Agriculture
Author :
Publisher : Academic Press
Total Pages : 578
Release :
ISBN-10 : 9780128236956
ISBN-13 : 0128236957
Rating : 4/5 (56 Downloads)

Synopsis AI, Edge and IoT-based Smart Agriculture by : Ajith Abraham

AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming. - Integrates sustainable agriculture, Greenhouse IOT, precision agriculture, crops monitoring, crops controlling to prediction, livestock monitoring, and farm management - Presents data mining techniques for precision agriculture, including weather prediction, plant disease prediction, and decision support for crop and soil selection - Promotes the importance and uses in managing the agro ecosystem for food security - Emphasizes low energy usage options for low cost and environmental sustainability

Smart Agriculture Automation Using Advanced Technologies

Smart Agriculture Automation Using Advanced Technologies
Author :
Publisher : Springer Nature
Total Pages : 236
Release :
ISBN-10 : 9789811661242
ISBN-13 : 9811661243
Rating : 4/5 (42 Downloads)

Synopsis Smart Agriculture Automation Using Advanced Technologies by : Amitava Choudhury

This book addresses the challenges for developing and emerging trends in Internet-of-Things (IoT) for smart agriculture platforms. It also describes data analytics & machine learning, cloud architecture, automation & robotics and aims to overcome existing barriers for smart agriculture with commercial viability. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. The book explores a range of applications including intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems. This volume will be helpful for engineering and technology experts and researchers, as well as for policy-makers.

Advanced Technologies for Smart Agriculture

Advanced Technologies for Smart Agriculture
Author :
Publisher : CRC Press
Total Pages : 421
Release :
ISBN-10 : 9781003810407
ISBN-13 : 1003810403
Rating : 4/5 (07 Downloads)

Synopsis Advanced Technologies for Smart Agriculture by : Kalaiselvi K.

This book brings new smart farming methodologies to the forefront, sparked by pervasive applications with automated farming technology. New indigenous expertise on smart agricultural technologies is presented along with conceptual prototypes showing how the Internet of Things, cloud computing, machine learning, deep learning, precision farming, crop management systems, etc., will be used in large-scale production in the future. The necessity of available welfare systems for farmers’ well-being is also discussed in the book. It draws the conclusion that there is a greater need and demand today for smart farming methodologies driven by technology than ever before.

Modern Techniques for Agricultural Disease Management and Crop Yield Prediction

Modern Techniques for Agricultural Disease Management and Crop Yield Prediction
Author :
Publisher : IGI Global
Total Pages : 310
Release :
ISBN-10 : 9781522596349
ISBN-13 : 1522596348
Rating : 4/5 (49 Downloads)

Synopsis Modern Techniques for Agricultural Disease Management and Crop Yield Prediction by : Pradeep, N.

Since agriculture is one of the key parameters in assessing the gross domestic product (GDP) of any country, it has become crucial to transition from traditional agricultural practices to smart agriculture. New agricultural technologies provide numerous opportunities to maximize crop yield by recognizing and analyzing diseases and other natural variables that may affect it. Therefore, it is necessary to understand how computer-assisted technologies can best be utilized and adopted in the conversion to smart agriculture. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction is an essential publication that widens the spectrum of computational methods that can aid in agriculture disease management, weed detection, and crop yield prediction. Featuring coverage on a wide range of topics such as soil and crop sensors, swarm robotics, and weed detection, this book is ideally designed for environmentalists, farmers, botanists, agricultural engineers, computer engineers, scientists, researchers, practitioners, and students seeking current research on technology and techniques for agricultural diseases and predictive trends.

Artificial Intelligence and Smart Agriculture Technology

Artificial Intelligence and Smart Agriculture Technology
Author :
Publisher : CRC Press
Total Pages : 319
Release :
ISBN-10 : 9781000604344
ISBN-13 : 1000604349
Rating : 4/5 (44 Downloads)

Synopsis Artificial Intelligence and Smart Agriculture Technology by : Utku Kose

This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.

Application of Machine Learning in Agriculture

Application of Machine Learning in Agriculture
Author :
Publisher : Academic Press
Total Pages : 332
Release :
ISBN-10 : 9780323906685
ISBN-13 : 0323906680
Rating : 4/5 (85 Downloads)

Synopsis Application of Machine Learning in Agriculture by : Mohammad Ayoub Khan

Application of Machine Learning in Smart Agriculture is the first book to present a multidisciplinary look at how technology can not only improve agricultural output, but the economic efficiency of that output as well. Through a global lens, the book approaches the subject from a technical perspective, providing important knowledge and insights for effective and efficient implementation and utilization of machine learning. As artificial intelligence techniques are being used to increase yield through optimal planting, fertilizing, irrigation, and harvesting, these are only part of the complex picture which must also take into account the economic investment and its optimized return. The performance of machine learning models improves over time as the various mathematical and statistical models are proven. Presented in three parts, Application of Machine Learning in Smart Agriculture looks at the fundamentals of smart agriculture; the economics of the technology in the agricultural marketplace; and a diverse representation of the tools and techniques currently available, and in development. This book is an important resource for advanced level students and professionals working with artificial intelligence, internet of things, technology and agricultural economics. - Addresses the technology of smart agriculture from a technical perspective - Reveals opportunities for technology to improve and enhance not only yield and quality, but the economic value of a food crop - Discusses physical instruments, simulations, sensors, and markets for machine learning in agriculture