Business Forecasting

Business Forecasting
Author :
Publisher : John Wiley & Sons
Total Pages : 435
Release :
ISBN-10 : 9781119782476
ISBN-13 : 1119782473
Rating : 4/5 (76 Downloads)

Synopsis Business Forecasting by : Michael Gilliland

Discover the role of machine learning and artificial intelligence in business forecasting from some of the brightest minds in the field In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning accomplished authors Michael Gilliland, Len Tashman, and Udo Sglavo deliver relevant and timely insights from some of the most important and influential authors in the field of forecasting. You'll learn about the role played by machine learning and AI in the forecasting process and discover brand-new research, case studies, and thoughtful discussions covering an array of practical topics. The book offers multiple perspectives on issues like monitoring forecast performance, forecasting process, communication and accountability for forecasts, and the use of big data in forecasting. You will find: Discussions on deep learning in forecasting, including current trends and challenges Explorations of neural network-based forecasting strategies A treatment of the future of artificial intelligence in business forecasting Analyses of forecasting methods, including modeling, selection, and monitoring In addition to the Foreword by renowned researchers Spyros Makridakis and Fotios Petropoulos, the book also includes 16 "opinion/editorial" Afterwords by a diverse range of top academics, consultants, vendors, and industry practitioners, each providing their own unique vision of the issues, current state, and future direction of business forecasting. Perfect for financial controllers, chief financial officers, business analysts, forecast analysts, and demand planners, Business Forecasting will also earn a place in the libraries of other executives and managers who seek a one-stop resource to help them critically assess and improve their own organization's forecasting efforts.

Predictive Analytics

Predictive Analytics
Author :
Publisher : John Wiley & Sons
Total Pages : 368
Release :
ISBN-10 : 9781119153658
ISBN-13 : 1119153654
Rating : 4/5 (58 Downloads)

Synopsis Predictive Analytics by : Eric Siegel

"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a

Demand Prediction in Retail

Demand Prediction in Retail
Author :
Publisher : Springer Nature
Total Pages : 166
Release :
ISBN-10 : 9783030858551
ISBN-13 : 3030858553
Rating : 4/5 (51 Downloads)

Synopsis Demand Prediction in Retail by : Maxime C. Cohen

From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture. This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy.

Forecasting: principles and practice

Forecasting: principles and practice
Author :
Publisher : OTexts
Total Pages : 380
Release :
ISBN-10 : 9780987507112
ISBN-13 : 0987507117
Rating : 4/5 (12 Downloads)

Synopsis Forecasting: principles and practice by : Rob J Hyndman

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Consumption-Based Forecasting and Planning

Consumption-Based Forecasting and Planning
Author :
Publisher : John Wiley & Sons
Total Pages : 275
Release :
ISBN-10 : 9781119809869
ISBN-13 : 111980986X
Rating : 4/5 (69 Downloads)

Synopsis Consumption-Based Forecasting and Planning by : Charles W. Chase

Discover a new, demand-centric framework for forecasting and demand planning In Consumption-Based Forecasting and Planning, thought leader and forecasting expert Charles W. Chase delivers a practical and novel approach to retail and consumer goods companies demand planning process. The author demonstrates why a demand-centric approach relying on point-of-sale and syndicated scanner data is necessary for success in the new digital economy. The book showcases short- and mid-term demand sensing and focuses on disruptions to the marketplace caused by the digital economy and COVID-19. You’ll also learn: How to improve demand forecasting and planning accuracy, reduce inventory costs, and minimize waste and stock-outs What is driving shifting consumer demand patterns, including factors like price, promotions, in-store merchandising, and unplanned and unexpected events How to apply analytics and machine learning to your forecasting challenges using proven approaches and tactics described throughout the book via several case studies. Perfect for executives, directors, and managers at retailers, consumer products companies, and other manufacturers, Consumption-Based Forecasting and Planning will also earn a place in the libraries of sales, marketing, supply chain, and finance professionals seeking to sharpen their understanding of how to predict future consumer demand.

Inventory Optimization

Inventory Optimization
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 318
Release :
ISBN-10 : 9783110673944
ISBN-13 : 3110673940
Rating : 4/5 (44 Downloads)

Synopsis Inventory Optimization by : Nicolas Vandeput

In this book . . . Nicolas Vandeput hacks his way through the maze of quantitative supply chain optimizations. This book illustrates how the quantitative optimization of 21st century supply chains should be crafted and executed. . . . Vandeput is at the forefront of a new and better way of doing supply chains, and thanks to a richly illustrated book, where every single situation gets its own illustrating code snippet, so could you. --Joannes Vermorel, CEO, Lokad Inventory Optimization argues that mathematical inventory models can only take us so far with supply chain management. In order to optimize inventory policies, we have to use probabilistic simulations. The book explains how to implement these models and simulations step-by-step, starting from simple deterministic ones to complex multi-echelon optimization. The first two parts of the book discuss classical mathematical models, their limitations and assumptions, and a quick but effective introduction to Python is provided. Part 3 contains more advanced models that will allow you to optimize your profits, estimate your lost sales and use advanced demand distributions. It also provides an explanation of how you can optimize a multi-echelon supply chain based on a simple—yet powerful—framework. Part 4 discusses inventory optimization thanks to simulations under custom discrete demand probability functions. Inventory managers, demand planners and academics interested in gaining cost-effective solutions will benefit from the "do-it-yourself" examples and Python programs included in each chapter. Events around the book Link to a De Gruyter Online Event in which the author Nicolas Vandeput together with Stefan de Kok, supply chain innovator and CEO of Wahupa; Koen Cobbaert, Director in the S&O Industry practice of PwC Belgium; Bram Desmet, professor of operations & supply chain at the Vlerick Business School in Ghent; and Karl-Eric Devaux, Planning Consultant, Hatmill, discuss about models for inventory optimization. The event will be moderated by Eric Wilson, Director of Thought Leadership for Institute of Business Forecasting (IBF): https://youtu.be/565fDQMJEEg

Data Science for Supply Chain Forecasting

Data Science for Supply Chain Forecasting
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 310
Release :
ISBN-10 : 9783110671124
ISBN-13 : 3110671123
Rating : 4/5 (24 Downloads)

Synopsis Data Science for Supply Chain Forecasting by : Nicolas Vandeput

Using data science in order to solve a problem requires a scientific mindset more than coding skills. Data Science for Supply Chain Forecasting, Second Edition contends that a true scientific method which includes experimentation, observation, and constant questioning must be applied to supply chains to achieve excellence in demand forecasting. This second edition adds more than 45 percent extra content with four new chapters including an introduction to neural networks and the forecast value added framework. Part I focuses on statistical "traditional" models, Part II, on machine learning, and the all-new Part III discusses demand forecasting process management. The various chapters focus on both forecast models and new concepts such as metrics, underfitting, overfitting, outliers, feature optimization, and external demand drivers. The book is replete with do-it-yourself sections with implementations provided in Python (and Excel for the statistical models) to show the readers how to apply these models themselves. This hands-on book, covering the entire range of forecasting—from the basics all the way to leading-edge models—will benefit supply chain practitioners, forecasters, and analysts looking to go the extra mile with demand forecasting.