Plant Biochemical Regulators
Download Plant Biochemical Regulators full books in PDF, epub, and Kindle. Read online free Plant Biochemical Regulators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Tariq Aftab |
Publisher |
: Springer Nature |
Total Pages |
: 504 |
Release |
: 2021-03-25 |
ISBN-10 |
: 9783030611538 |
ISBN-13 |
: 3030611531 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Plant Growth Regulators by : Tariq Aftab
Agriculture faces many challenges to fulfil the growing demand for sustainable food production and ensure high-quality nutrition for a rapidly growing population. To guarantee adequate food production, it is necessary to increase the yield per area of arable land. A method for achieving this goal has been the application of growth regulators to modulate plant growth. Plant growth regulators (PGRs) are substances in specific formulations which, when applied to plants or seeds, have the capacity to promote, inhibit, or modify physiological traits, development and/or stress responses. They maintain proper balance between source and sink for enhancing crop yield. PGRs are used to maximize productivity and quality, improve consistency in production, and overcome genetic and abiotic limitations to plant productivity. Suitable PGRs include hormones such as cytokinins and auxins, and hormone-like compounds such as mepiquat chloride and paclobutrazol. The use of PGRs in mainstream agriculture has steadily increased within the last 20 years as their benefits have become better understood by growers. Unfortunately, the growth of the PGR market may be constrained by a lack of innovation at a time when an increase in demand for new products will require steady innovation and discovery of novel, cost-competitive, specific, and effective PGRs. A plant bio-stimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrients content. Apart from traditional PGRs, which are mostly plant hormones, there are a number of substances/molecules such as nitric oxide, methyl jasmonate, brassinosteroids, seaweed extracts, strigolactones, plant growth promoting rhizobacteria etc. which act as PGRs. These novel PGRs or bio-stimulants have been reported to play important roles in stress responses and adaptation. They can protect plants against various stresses, including water deficit, chilling and high temperatures, salinity and flooding. This book includes chapters ranging from sensing and signalling in plants to translational research. In addition, the cross-talk operative in plants in response to varied signals of biotic and abiotic nature is also presented. Ultimately the objective of this book is to present the current scenario and the future plan of action for the management of stresses through traditional as well as novel PGRs. We believe that this book will initiate and introduce readers to state-of-the-art developments and trends in this field of study.
Author |
: Phytochemical Society of Europe |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 332 |
Release |
: 1999 |
ISBN-10 |
: 079235494X |
ISBN-13 |
: 9780792354949 |
Rating |
: 4/5 (4X Downloads) |
Synopsis Regulation of Primary Metabolic Pathways in Plants by : Phytochemical Society of Europe
Papers from a January 1997 conference held at St. Hugh's College, Oxford, review progress in the area of primary plant metabolism, and highlight the extent to which molecular techniques now influence the investigation and understanding of plant metabolism. Emphasis is centered on processes related to dominant pathways of carbohydrate production and utilization, and material is arranged to reflect the current focus of researchers on three areas of investigation: molecular architecture of selected enzymes of primary metabolism; integration of metabolism between organelles, cells, tissues, and organs; and manipulation of major pathways of carbohydrate metabolism. Annotation copyrighted by Book News, Inc., Portland, OR
Author |
: Naseem Ahmad |
Publisher |
: Springer Nature |
Total Pages |
: 339 |
Release |
: 2021-05-02 |
ISBN-10 |
: 9789811590467 |
ISBN-13 |
: 981159046X |
Rating |
: 4/5 (67 Downloads) |
Synopsis Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture by : Naseem Ahmad
Plant tissue culture (PTC) technology has gained unassailable success for its various commercial and research applications in plant sciences. Plant growth regulators (PGRs) are an essential part of any plant tissue culture intervention for propagation or modification of plants. A wide range of PGRs are available, including aromatic compounds that show cytokinin activities, promote cell division and micro-propagation, viz. kinetin, N6-benzyladenine and topolins. Topolins are naturally occurring aromatic compounds that have gained popularity as an effective alternative for other frequently used cytokinins in in vitro culture of plants. Among them, meta-topolin [6-(3-hydroxybenzlyamino) purine] is the most popular and its use in plant tissue culture has amplified swiftly. During the last few decades, there have been numerous reports highlighting the effectiveness of meta-topolin in micropropagation and alleviation of various physiological disorders, rooting and acclimatization of tissue culture raised plants.
Author |
: Gyanendra Nath Mitra |
Publisher |
: Springer |
Total Pages |
: 209 |
Release |
: 2015-04-30 |
ISBN-10 |
: 9788132223344 |
ISBN-13 |
: 8132223349 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Regulation of Nutrient Uptake by Plants by : Gyanendra Nath Mitra
This book describes the mechanisms of nutrient taken up by plants at the biochemical and molecular level. This is a new concept developed over the past 30 years, primarily due to use of modern technology developed in biotechnological research, instrumentation, modern computation facilities, bioinformatics, the large volumes of information generated by use of various ‘omics’ and of course the dedicated hard work of a large number of researchers. Recent research indicates that nutrient uptake, its transport and redistribution in plants are under genetic control. There are groups of genes for each nutrient that encode transporter proteins whose functions are to acquire the specific nutrient from the soil and transport it across the plasma membrane of the root hair cells for use in plant metabolism. Deficiency or sufficiency of a plant nutrient induces different groups of genes to produce m-RNA transcripts for translation of transporter proteins. A large number of metabolic enzymes are up or down regulated in response to deficiency of plant nutrients. Morphological and metabolic adaptations in order to better acquire nutrients and use them frugally when nutrients are scarce in the growth medium can be observed in plants. Heavy metals, which are toxic to plants, induce different sets of defence mechanisms. In 20 chapters, the book describes plants’ uptake mechanisms for all the major, secondary and micronutrients, beneficial elements and heavy metals. References to research work quoted in the text are updated up to 2014 and included at the end of each chapter. Biotechnological approaches to improving nutrient use efficiency are discussed wherever such information is available. The structure and functions of transporter proteins involved in the uptake of nutrients are discussed. Additional information on some of the specific topics is provided in text boxes or as separate sections within the chapters. Lastly, the terminology used has been explained as far as possible in the text, mostly within parentheses.
Author |
: Harold W. Gausman |
Publisher |
: CRC Press |
Total Pages |
: 374 |
Release |
: 2020-07-24 |
ISBN-10 |
: 9781000104646 |
ISBN-13 |
: 1000104648 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Plant Biochemical Regulators by : Harold W. Gausman
A textbook for a graduate or advanced undergraduate course in biotechnology in a wide range of fields concerned with plants. Describes the use of both endogenous and introduced biochemical regulators to manipulate plant responses. Annotation copyright Book News, Inc. Portland, Or.
Author |
: Naseem Ahmad |
Publisher |
: Springer |
Total Pages |
: 489 |
Release |
: 2018-03-23 |
ISBN-10 |
: 9789811080043 |
ISBN-13 |
: 9811080046 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Thidiazuron: From Urea Derivative to Plant Growth Regulator by : Naseem Ahmad
Plant biotechnology is a most interesting branch for academicians and researchers in recent past. Now days, it becomes a very useful tool in agriculture and medicine and is regarded as a popular area of research especially in biological sciences because it makes an integral use of biochemistry, molecular biology and engineering sciences in order to achieve technological application of cultured tissues, cell and microbes. Plant tissue culture (PTC) refers to a technique of cultivation of plant cells and other parts on artificial nutrient medium in controlled environment under aseptic conditions. PTC requires various nutrients, pH, carbon source, gelling agent, temperature, photoperiod, humidity etc. and most importantly the judicious use of plant growth regulators. Various natural, adenine and phenyl urea derivatives are employed for the induction and proliferation of different types of explants. Several phenyl urea derivatives were evaluated and it was observed that thidiazuron (n-phenyl-N”-1,2,3- thidiazol-5-ulurea) was found to be the most active among the plant growth regulators. Thidiazuron (TDZ) was initially developed as a cotton defoliant and showed high cytokinin like activity. In some examples, its activity was 100 times more than BA in tobacco callus assay and produces more number of shoots in cultures than Zeatin and 2iP. TDZ also showed major breakthrough in tissue culture of various recalcitrant legumes and woody species. For the last two decades, number of laboratories has been working on TDZ with different aspect and number of publications has come out. To the best of our knowledge, there is no comprehensive edited volume on this particular topic. Hence th,e edited volume is a deed to consolidate the scattered information on role of TDZ in plant tissue culture and genetic manipulations that would hopefully prove informative to various researches. Thidiazuron: From Urea Derivative to Plant Growth Regulator compiles various aspects of TDZ in Plant Tissue Culture with profitable implications. The book will provides basic material for academicians and researchers who want to initiate work in this fascinating area of research. The book will contain 26 chapters compiled by International dignitaries and thus giving a holistic view to the edited volume.
Author |
: Eva-Mari Aro |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 624 |
Release |
: 2006-04-11 |
ISBN-10 |
: 9780306481482 |
ISBN-13 |
: 0306481480 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Regulation of Photosynthesis by : Eva-Mari Aro
This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.
Author |
: Shamsul Hayat |
Publisher |
: Springer |
Total Pages |
: 449 |
Release |
: 2019-04-02 |
ISBN-10 |
: 9789811360589 |
ISBN-13 |
: 9811360588 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Brassinosteroids: Plant Growth and Development by : Shamsul Hayat
The entire range of the developmental process in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around the plants. Phytohormones play a crucial role in regulating the direction of plant in a coordinated fashion in association with metabolism that provides energy and the building blocks to generate the form that we recognize as a plant. Out of the recognized hormones, attention has largely been focused on Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene and more recently on Brassinosteroids. In this book we are providing the information about a brassinosteroids that again confirm its status as phytohormones because it has significant impact on various aspects of the plant life and its ubiquitous distribution throughout the plant kingdom. Brassinosteroids are generating a significant impact on plant growth and development, photosynthesis, transpiration, ion uptake and transport, induces specific changes in leaf anatomy and chloroplast structure. This book is not an encyclopedia of reviews but includes a selected collection of newly written, integrated, illustrated reviews describing our knowledge of brassinosteroids. The aim of this book is to tell all about brassinosteroids, by the present time. The various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant development is possible. It is intended that this book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.
Author |
: Hans-Walter Heldt |
Publisher |
: Academic Press |
Total Pages |
: 658 |
Release |
: 2005 |
ISBN-10 |
: 9780120883912 |
ISBN-13 |
: 0120883910 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Plant Biochemistry by : Hans-Walter Heldt
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.
Author |
: M. Iqbal R. Khan |
Publisher |
: Woodhead Publishing |
Total Pages |
: 597 |
Release |
: 2019-03-15 |
ISBN-10 |
: 9780128164525 |
ISBN-13 |
: 0128164522 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Plant Signaling Molecules by : M. Iqbal R. Khan
Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses