Pattern Recognition in Biology

Pattern Recognition in Biology
Author :
Publisher : Nova Publishers
Total Pages : 268
Release :
ISBN-10 : 1600217168
ISBN-13 : 9781600217166
Rating : 4/5 (68 Downloads)

Synopsis Pattern Recognition in Biology by : Marsha S. Corrigan

Pattern recognition is the research area that studies the operation and design of systems that recognise patterns in data. It encloses subdisciplines like discriminant analysis, feature extraction, error estimation, cluster analysis (together sometimes called statistical pattern recognition), grammatical inference and parsing (sometimes called syntactical pattern recognition). Important application areas are image analysis, character recognition, speech analysis, man and machine diagnostics, person identification and industrial inspection. This book presents leading-edge research from around the world.

Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R

Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R
Author :
Publisher : CRC Press
Total Pages : 370
Release :
ISBN-10 : 9781420069747
ISBN-13 : 1420069748
Rating : 4/5 (47 Downloads)

Synopsis Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R by : Gabriel Valiente

Emphasizing the search for patterns within and between biological sequences, trees, and graphs, Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R shows how combinatorial pattern matching algorithms can solve computational biology problems that arise in the analysis of genomic, transcriptomic, proteomic, metabolomic

Pattern Recognition Techniques Applied to Biomedical Problems

Pattern Recognition Techniques Applied to Biomedical Problems
Author :
Publisher : Springer Nature
Total Pages : 227
Release :
ISBN-10 : 9783030380212
ISBN-13 : 3030380211
Rating : 4/5 (12 Downloads)

Synopsis Pattern Recognition Techniques Applied to Biomedical Problems by : Martha Refugio Ortiz-Posadas

This book covers pattern recognition techniques applied to various areas of biomedicine, including disease diagnosis and prognosis, and several problems of classification, with a special focus on—but not limited to—pattern recognition modeling of biomedical signals and images. Multidisciplinary by definition, the book’s topic blends computing, mathematics and other technical sciences towards the development of computational tools and methodologies that can be applied to pattern recognition processes. In this work, the efficacy of such methods and techniques for processing medical information is analyzed and compared, and auxiliary criteria for determining the correct diagnosis and treatment strategies are recommended and applied. Researchers in applied mathematics, the computer sciences, engineering and related fields with a focus on medical applications will benefit from this book, as well as professionals with a special interest in state-of-the-art pattern recognition techniques as applied to biomedicine.

Introduction to Statistical Pattern Recognition

Introduction to Statistical Pattern Recognition
Author :
Publisher : Elsevier
Total Pages : 606
Release :
ISBN-10 : 9780080478654
ISBN-13 : 0080478654
Rating : 4/5 (54 Downloads)

Synopsis Introduction to Statistical Pattern Recognition by : Keinosuke Fukunaga

This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.

Pattern Recognition in Computational Molecular Biology

Pattern Recognition in Computational Molecular Biology
Author :
Publisher : John Wiley & Sons
Total Pages : 654
Release :
ISBN-10 : 9781119078869
ISBN-13 : 1119078865
Rating : 4/5 (69 Downloads)

Synopsis Pattern Recognition in Computational Molecular Biology by : Mourad Elloumi

A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.

Pattern Recognition

Pattern Recognition
Author :
Publisher : Elsevier
Total Pages : 705
Release :
ISBN-10 : 9780080513621
ISBN-13 : 008051362X
Rating : 4/5 (21 Downloads)

Synopsis Pattern Recognition by : Sergios Theodoridis

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)
Author :
Publisher : World Scientific
Total Pages : 1045
Release :
ISBN-10 : 9789814497640
ISBN-13 : 9814497649
Rating : 4/5 (40 Downloads)

Synopsis Handbook Of Pattern Recognition And Computer Vision (2nd Edition) by : Chi Hau Chen

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Artificial Intelligence and Molecular Biology

Artificial Intelligence and Molecular Biology
Author :
Publisher :
Total Pages : 484
Release :
ISBN-10 : UOM:39015028911165
ISBN-13 :
Rating : 4/5 (65 Downloads)

Synopsis Artificial Intelligence and Molecular Biology by : Lawrence Hunter

These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. The enormous amount of data generated by the Human Genome Project and other large-scale biological research has created a rich and challenging domain for research in artificial intelligence. These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. Focusing on novel technologies and approaches, rather than on proven applications, they cover genetic sequence analysis, protein structure representation and prediction, automated data analysis aids, and simulation of biological systems. A brief introductory primer on molecular biology and Al gives computer scientists sufficient background to understand much of the biology discussed in the book. Lawrence Hunter is Director of the Machine Learning Project at the National Library of Medicine, National Institutes of Health.

Chemometrics for Pattern Recognition

Chemometrics for Pattern Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 522
Release :
ISBN-10 : 0470746475
ISBN-13 : 9780470746479
Rating : 4/5 (75 Downloads)

Synopsis Chemometrics for Pattern Recognition by : Richard G. Brereton

Over the past decade, pattern recognition has been one of the fastest growth points in chemometrics. This has been catalysed by the increase in capabilities of automated instruments such as LCMS, GCMS, and NMR, to name a few, to obtain large quantities of data, and, in parallel, the significant growth in applications especially in biomedical analytical chemical measurements of extracts from humans and animals, together with the increased capabilities of desktop computing. The interpretation of such multivariate datasets has required the application and development of new chemometric techniques such as pattern recognition, the focus of this work. Included within the text are: ‘Real world’ pattern recognition case studies from a wide variety of sources including biology, medicine, materials, pharmaceuticals, food, forensics and environmental science; Discussions of methods, many of which are also common in biology, biological analytical chemistry and machine learning; Common tools such as Partial Least Squares and Principal Components Analysis, as well as those that are rarely used in chemometrics such as Self Organising Maps and Support Vector Machines; Representation in full colour; Validation of models and hypothesis testing, and the underlying motivation of the methods, including how to avoid some common pitfalls. Relevant to active chemometricians and analytical scientists in industry, academia and government establishments as well as those involved in applying statistics and computational pattern recognition.

Advances In Pattern Recognition And Artificial Intelligence

Advances In Pattern Recognition And Artificial Intelligence
Author :
Publisher : World Scientific
Total Pages : 277
Release :
ISBN-10 : 9789811239021
ISBN-13 : 9811239029
Rating : 4/5 (21 Downloads)

Synopsis Advances In Pattern Recognition And Artificial Intelligence by : Marleah Blom

This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more.Chapters include works centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.