Optimal Filtering

Optimal Filtering
Author :
Publisher : Courier Corporation
Total Pages : 370
Release :
ISBN-10 : 9780486136899
ISBN-13 : 0486136892
Rating : 4/5 (99 Downloads)

Synopsis Optimal Filtering by : Brian D. O. Anderson

Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.

Optimal Filtering

Optimal Filtering
Author :
Publisher : Springer Science & Business Media
Total Pages : 387
Release :
ISBN-10 : 9789401153263
ISBN-13 : 9401153264
Rating : 4/5 (63 Downloads)

Synopsis Optimal Filtering by : V.N. Fomin

This book is devoted to an investigation of some important problems of mod ern filtering theory concerned with systems of 'any nature being able to per ceive, store and process an information and apply it for control and regulation'. (The above quotation is taken from the preface to [27]). Despite the fact that filtering theory is l'argely worked out (and its major issues such as the Wiener-Kolmogorov theory of optimal filtering of stationary processes and Kalman-Bucy recursive filtering theory have become classical) a development of the theory is far from complete. A great deal of recent activity in this area is observed, researchers are trying consistently to generalize famous results, extend them to more broad classes of processes, realize and justify more simple procedures for processing measurement data in order to obtain more efficient filtering algorithms. As to nonlinear filter ing, it remains much as fragmentary. Here much progress has been made by R. L. Stratonovich and his successors in the area of filtering of Markov processes. In this volume an effort is made to advance in certain of these issues. The monograph has evolved over many years, coming of age by stages. First it was an impressive job of gathering together the bulk of the impor tant contributions to estimation theory, an understanding and moderniza tion of some of its results and methods, with the intention of applying them to recursive filtering problems.

New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems

New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 228
Release :
ISBN-10 : 9783540708025
ISBN-13 : 3540708022
Rating : 4/5 (25 Downloads)

Synopsis New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems by : Michael Basin

0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a ?nite-dimensional closed system of ?ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy ?lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ?ltering equations. However, the optimal nonlinear ?nite-dimensional ?lter can be - tained in some other cases, if, for example, the state vector can take only a ?nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis?es the Riccati equation df /dx + f = x (see [15]). The complete classi?cation of the “general situation” cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear ?nite-dimensional ?lter exists, is given in [95].

New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems

New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems
Author :
Publisher : Springer
Total Pages : 228
Release :
ISBN-10 : 9783540708032
ISBN-13 : 3540708030
Rating : 4/5 (32 Downloads)

Synopsis New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems by : Michael Basin

0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a ?nite-dimensional closed system of ?ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy ?lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ?ltering equations. However, the optimal nonlinear ?nite-dimensional ?lter can be - tained in some other cases, if, for example, the state vector can take only a ?nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis?es the Riccati equation df /dx + f = x (see [15]). The complete classi?cation of the “general situation” cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear ?nite-dimensional ?lter exists, is given in [95].

Polynomial Methods in Optimal Control and Filtering

Polynomial Methods in Optimal Control and Filtering
Author :
Publisher : IET
Total Pages : 338
Release :
ISBN-10 : 0863412955
ISBN-13 : 9780863412950
Rating : 4/5 (55 Downloads)

Synopsis Polynomial Methods in Optimal Control and Filtering by : Kenneth J. Hunt

This book aims to demonstrate the power and breadth of polynomial methods in control and filtering. Direct polynomial methods have previously received little attention compared with the alternative Wiener-Hopf transfer-function method and the statespace methods which rely on Riccati equations. The book provides a broad coverage of the polynomial equation approach in a range of linear control and filtering problems. The principal feature of the approach is the description of systems in fractional form using transfer functions. This representation leads quite naturally and directly to the parameterisation of all 'acceptable' feedback controllers for a given problem in the form of a Diophantine equation over polynomials. In the polynomial equation approach, this direct parameterisation is explicitly carried through to the synthesis of controllers and filters and, further, to the computer implementation of numerical algorithms. The book is likely to be of interest to students, researchers and engineers with some control and systems theory or signal processing background. It could be used as the basis of a graduate-level course in optimal control and filtering. The book proceeds from the necessary background material presented at a tutorial level, through recent theoretical and practical developments, to a detailed presentation of numerical algorithms.

Optimal State Estimation

Optimal State Estimation
Author :
Publisher : John Wiley & Sons
Total Pages : 554
Release :
ISBN-10 : 9780470045336
ISBN-13 : 0470045337
Rating : 4/5 (36 Downloads)

Synopsis Optimal State Estimation by : Dan Simon

A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.

Nonlinear Filtering and Optimal Phase Tracking

Nonlinear Filtering and Optimal Phase Tracking
Author :
Publisher : Springer Science & Business Media
Total Pages : 276
Release :
ISBN-10 : 9781461404873
ISBN-13 : 1461404878
Rating : 4/5 (73 Downloads)

Synopsis Nonlinear Filtering and Optimal Phase Tracking by : Zeev Schuss

This book offers an analytical rather than measure-theoretical approach to the derivation of the partial differential equations of nonlinear filtering theory. The basis for this approach is the discrete numerical scheme used in Monte-Carlo simulations of stochastic differential equations and Wiener's associated path integral representation of the transition probability density. Furthermore, it presents analytical methods for constructing asymptotic approximations to their solution and for synthesizing asymptotically optimal filters. It also offers a new approach to the phase tracking problem, based on optimizing the mean time to loss of lock. The book is based on lecture notes from a one-semester special topics course on stochastic processes and their applications that the author taught many times to graduate students of mathematics, applied mathematics, physics, chemistry, computer science, electrical engineering, and other disciplines. The book contains exercises and worked-out examples aimed at illustrating the methods of mathematical modeling and performance analysis of phase trackers.

Optimal Time-Domain Noise Reduction Filters

Optimal Time-Domain Noise Reduction Filters
Author :
Publisher : Springer Science & Business Media
Total Pages : 82
Release :
ISBN-10 : 9783642196010
ISBN-13 : 3642196012
Rating : 4/5 (10 Downloads)

Synopsis Optimal Time-Domain Noise Reduction Filters by : Jacob Benesty

Additive noise is ubiquitous in acoustics environments and can affect the intelligibility and quality of speech signals. Therefore, a so-called noise reduction algorithm is required to mitigate the effect of the noise that is picked up by the microphones. This work proposes a general framework in the time domain for the single and multiple microphone cases, from which it is very convenient to derive, study, and analyze all kind of optimal noise reduction filters. Not only that all known algorithms can be deduced from this approach, shedding more light on how they function, but new ones can be discovered as well.

Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing
Author :
Publisher : Cambridge University Press
Total Pages : 255
Release :
ISBN-10 : 9781107030657
ISBN-13 : 110703065X
Rating : 4/5 (57 Downloads)

Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.