Numerical Methods For Advection Diffusion Problems
Download Numerical Methods For Advection Diffusion Problems full books in PDF, epub, and Kindle. Read online free Numerical Methods For Advection Diffusion Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Willem Hundsdorfer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 479 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783662090176 |
ISBN-13 |
: 3662090171 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by : Willem Hundsdorfer
Unique book on Reaction-Advection-Diffusion problems
Author |
: Martin Stynes |
Publisher |
: |
Total Pages |
: |
Release |
: 2018 |
ISBN-10 |
: 1470450216 |
ISBN-13 |
: 9781470450212 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Convection-diffusion Problems by : Martin Stynes
Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this c.
Author |
: Guy P. Brasseur |
Publisher |
: Cambridge University Press |
Total Pages |
: 631 |
Release |
: 2017-06-19 |
ISBN-10 |
: 9781108210959 |
ISBN-13 |
: 1108210953 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Modeling of Atmospheric Chemistry by : Guy P. Brasseur
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer |
Total Pages |
: 522 |
Release |
: 2017-06-21 |
ISBN-10 |
: 9783319554563 |
ISBN-13 |
: 3319554565 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Author |
: Hans-Görg Roos |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 599 |
Release |
: 2008-09-17 |
ISBN-10 |
: 9783540344674 |
ISBN-13 |
: 3540344675 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Robust Numerical Methods for Singularly Perturbed Differential Equations by : Hans-Görg Roos
This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.
Author |
: Cornelis Boudewijn Vreugdenhil |
Publisher |
: |
Total Pages |
: 396 |
Release |
: 1993 |
ISBN-10 |
: STANFORD:36105004406091 |
ISBN-13 |
: |
Rating |
: 4/5 (91 Downloads) |
Synopsis Numerical Methods for Advection--diffusion Problems by : Cornelis Boudewijn Vreugdenhil
Author |
: Alfio Quarteroni |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 551 |
Release |
: 2009-02-11 |
ISBN-10 |
: 9783540852681 |
ISBN-13 |
: 3540852689 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Numerical Approximation of Partial Differential Equations by : Alfio Quarteroni
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Author |
: Ronald E Mickens |
Publisher |
: World Scientific |
Total Pages |
: 332 |
Release |
: 2020-11-11 |
ISBN-10 |
: 9789811222559 |
ISBN-13 |
: 981122255X |
Rating |
: 4/5 (59 Downloads) |
Synopsis Nonstandard Finite Difference Schemes: Methodology And Applications by : Ronald E Mickens
This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.
Author |
: Sandip Mazumder |
Publisher |
: Academic Press |
Total Pages |
: 484 |
Release |
: 2015-12-01 |
ISBN-10 |
: 9780128035047 |
ISBN-13 |
: 0128035048 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Numerical Methods for Partial Differential Equations by : Sandip Mazumder
Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives
Author |
: Randall J. LeVeque |
Publisher |
: SIAM |
Total Pages |
: 356 |
Release |
: 2007-01-01 |
ISBN-10 |
: 0898717833 |
ISBN-13 |
: 9780898717839 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.