Nonparametric Analysis of Longitudinal Data in Factorial Experiments

Nonparametric Analysis of Longitudinal Data in Factorial Experiments
Author :
Publisher : Wiley-Interscience
Total Pages : 296
Release :
ISBN-10 : UOM:39015053516053
ISBN-13 :
Rating : 4/5 (53 Downloads)

Synopsis Nonparametric Analysis of Longitudinal Data in Factorial Experiments by : Edgar Brunner

The authoritative reference on nonparametric methods for evaluating longitudinal data in factorial designs Broadening the range of techniques that can be used to evaluate longitudinal data, Nonparametric Analysis of Longitudinal Data in Factorial Experiments presents nonparametric methods of evaluation that supplement the generalized linear models approach. Emphasizing the practical application of these methods in statistical procedures, this book provides a unified approach for the analysis of factorial designs involving longitudinal data that is appropriate for metric data, count data, ordered categorical data, and dichotomous data. Topics covered include nonparametric models, effects and hypotheses in experimental design, estimators for relative effects, experiments for one and several groups of subjects, multifactorial experiments, dependent replications, and experiments with numerous time points. The basic mathematical principles for the methods introduced here are described in theory, consistent with the book's minimal math requirements. Simple approximations for small data sets are provided, as well as ample chapter exercises to test skills, an appendix that includes original data for the examples used throughout the book, and downloadable SAS-IML macros for implementing the more extensive calculations. All applications are designed to be useful in many fields. Generously supplemented with more than 110 graphs and tables, Nonparametric Analysis of Longitudinal Data in Factorial Experiments is an essential reference for statisticians and biometricians, researchers in clinical trials, psychological studies, and in the fields of forestry, agriculture, sociology, ecology, and biology, as well as graduate students in statistics and biostatistics.

Applied Longitudinal Analysis

Applied Longitudinal Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 540
Release :
ISBN-10 : 0471214876
ISBN-13 : 9780471214878
Rating : 4/5 (76 Downloads)

Synopsis Applied Longitudinal Analysis by : Garrett M. Fitzmaurice

Publisher Description

Robust Rank-Based and Nonparametric Methods

Robust Rank-Based and Nonparametric Methods
Author :
Publisher : Springer
Total Pages : 284
Release :
ISBN-10 : 9783319390659
ISBN-13 : 3319390651
Rating : 4/5 (59 Downloads)

Synopsis Robust Rank-Based and Nonparametric Methods by : Regina Y. Liu

The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.

Robust Methods in Biostatistics

Robust Methods in Biostatistics
Author :
Publisher : John Wiley & Sons
Total Pages : 292
Release :
ISBN-10 : 047074054X
ISBN-13 : 9780470740545
Rating : 4/5 (4X Downloads)

Synopsis Robust Methods in Biostatistics by : Stephane Heritier

Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.

Reliability and Risk

Reliability and Risk
Author :
Publisher : John Wiley & Sons
Total Pages : 396
Release :
ISBN-10 : 9780470060339
ISBN-13 : 0470060336
Rating : 4/5 (39 Downloads)

Synopsis Reliability and Risk by : Nozer D. Singpurwalla

We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications. Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by: Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis. Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book. Introducing the notion of “composite reliability”, or the collective reliability of a population of items. Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk. Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.

Random Graphs for Statistical Pattern Recognition

Random Graphs for Statistical Pattern Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 261
Release :
ISBN-10 : 9780471722083
ISBN-13 : 0471722081
Rating : 4/5 (83 Downloads)

Synopsis Random Graphs for Statistical Pattern Recognition by : David J. Marchette

A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment

Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment
Author :
Publisher : John Wiley & Sons
Total Pages : 502
Release :
ISBN-10 : 9780470857663
ISBN-13 : 0470857668
Rating : 4/5 (63 Downloads)

Synopsis Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment by : Lutz Edler

Human health risk assessment involves the measuring of risk of exposure to disease, with a view to improving disease prevention. Mathematical, biological, statistical, and computational methods play a key role in exposure assessment, hazard assessment and identification, and dose-response modelling. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment is a comprehensive text that accounts for the wealth of new biological data as well as new biological, toxicological, and medical approaches adopted in risk assessment. It provides an authoritative compendium of state-of-the-art methods proposed and used, featuring contributions from eminent authors with varied experience from academia, government, and industry. Provides a comprehensive summary of currently available quantitative methods for risk assessment of both cancer and non-cancer problems. Describes the applications and the limitations of current mathematical modelling and statistical analysis methods (classical and Bayesian). Includes an extensive introduction and discussion to each chapter. Features detailed studies of risk assessments using biologically-based modelling approaches. Discusses the varying computational aspects of the methods proposed. Provides a global perspective on human health risk assessment by featuring case studies from a wide range of countries. Features an extensive bibliography with links to relevant background information within each chapter. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment will appeal to researchers and practitioners in public health & epidemiology, and postgraduate students alike. It will also be of interest to professionals working in risk assessment agencies.

Markov Processes and Applications

Markov Processes and Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 322
Release :
ISBN-10 : 9780470721865
ISBN-13 : 0470721863
Rating : 4/5 (65 Downloads)

Synopsis Markov Processes and Applications by : Etienne Pardoux

"This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes." Jean-François Le Gall, Professor at Université de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them

Matrix Algebra Useful for Statistics

Matrix Algebra Useful for Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 486
Release :
ISBN-10 : 9780470009611
ISBN-13 : 0470009616
Rating : 4/5 (11 Downloads)

Synopsis Matrix Algebra Useful for Statistics by : Shayle R. Searle

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This book is intended to teach useful matrix algebra to 'students,teachers, consultants, researchers, and practitioners' in'statistics and other quantitative methods'.The author concentrateson practical matters, and writes in a friendly and informal style .. . this is a useful and enjoyable book to have at hand." -Biometrics This book is an easy-to-understand guide to matrix algebra and itsuses in statistical analysis. The material is presented in anexplanatory style rather than the formal theorem-proof format. Thisself-contained text includes numerous applied illustrations,numerical examples, and exercises.

Bayesian Statistical Modelling

Bayesian Statistical Modelling
Author :
Publisher : John Wiley & Sons
Total Pages : 596
Release :
ISBN-10 : 9780470035931
ISBN-13 : 0470035935
Rating : 4/5 (31 Downloads)

Synopsis Bayesian Statistical Modelling by : Peter Congdon

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology