Nonlinear, Tunable and Active Metamaterials

Nonlinear, Tunable and Active Metamaterials
Author :
Publisher : Springer
Total Pages : 333
Release :
ISBN-10 : 9783319083865
ISBN-13 : 3319083864
Rating : 4/5 (65 Downloads)

Synopsis Nonlinear, Tunable and Active Metamaterials by : Ilya V. Shadrivov

Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.

Nonlinear, Passive and Active Inclusions to Tailor the Wave Interaction in Metamaterials and Metasurfaces

Nonlinear, Passive and Active Inclusions to Tailor the Wave Interaction in Metamaterials and Metasurfaces
Author :
Publisher :
Total Pages : 324
Release :
ISBN-10 : OCLC:870907381
ISBN-13 :
Rating : 4/5 (81 Downloads)

Synopsis Nonlinear, Passive and Active Inclusions to Tailor the Wave Interaction in Metamaterials and Metasurfaces by : Pai-Yen Chen

Metamaterials have experienced a rapid growth of interest over the past few years and new capabilities are being explored to broaden the range of their unique electromagnetic properties for functional devices, including tunable, switchable, and nonlinear properties. In the future, there is the prospect of opening even more exciting applications with metamaterials, not yet imagined and thought not to be possible with currently available techniques. In my dissertation, I discuss several solutions for passive and active metamaterials and metasurfaces, with a particular focus on their potential applications, enabling a new class of metamaterials in the spectral range from radio frequencies (RF) and microwaves, terahertz (THz) to visible light. First, I demonstrate that by loading plasmonic nanoantennas with nonlinear nanoparticles, the nonlinear optical processes, such as multiple wave mixing, high harmonic generation, phase conjugation and optical bistability may be realized at the nanoscale, thanks to the strongly enhanced optical near fields accompanied with the plasmonic resonance. I present here the design, practical realization, and homogenization theory of nonlinear optical metamaterials and metasurfaces formed by optical nanoantenna arrays loaded with nonlinearities. As an extreme case of light manipulation at the "atomic" scale, I also study the collective oscillation of massless Dirac fermions inside grapheme monolayers, in which surface plasmon polaritons are controlled by electrostatic gating. I present how a graphene monolayer may serve as a building block and design paradigm for adaptable, switchable and frequency-configurable THz metamaterials and nanodevices, realizing various functionalities for cloaking, sensing, absorbing, switching, modulating, phasing, filtering, impedance transformation, photomixing and frequency synthesis in the THz spectrum. Last I present various metamaterial designs applied to invisibility cloaks based on the scattering cancellation mechanism enabled by plasmonic materials and passive/active metamaterials and metasurfaces. This cloaking technology may be used for camouflaging, enhancing the sensitivity and signal-to-noise ratio in RF wireless communication and sensor networks. In addition, electrically-small antennas based on the phase compensation effect offered by metamaterials with low or negative material properties are presented, with tailorable modal frequencies, bandwidth, and radiation properties.

Active Plasmonics and Tuneable Plasmonic Metamaterials

Active Plasmonics and Tuneable Plasmonic Metamaterials
Author :
Publisher : John Wiley & Sons
Total Pages : 266
Release :
ISBN-10 : 9781118634424
ISBN-13 : 111863442X
Rating : 4/5 (24 Downloads)

Synopsis Active Plasmonics and Tuneable Plasmonic Metamaterials by : Anatoly V. Zayats

This book, edited by two of the most respected researchers in plasmonics, gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area.

Functional Metamaterials and Metadevices

Functional Metamaterials and Metadevices
Author :
Publisher : Springer
Total Pages : 288
Release :
ISBN-10 : 9783319660448
ISBN-13 : 3319660446
Rating : 4/5 (48 Downloads)

Synopsis Functional Metamaterials and Metadevices by : Xingcun Colin Tong

To meet the demands of students, scientists and engineers for a systematic reference source, this book introduces, comprehensively and in a single voice, research and development progress in emerging metamaterials and derived functional metadevices. Coverage includes electromagnetic, optical, acoustic, thermal, and mechanical metamaterials and related metadevices. Metamaterials are artificially engineered composites with designed properties beyond those attainable in nature and with applications in all aspects of materials science. From spatially tailored dielectrics to tunable, dynamic materials properties and unique nonlinear behavior, metamaterial systems have demonstrated tremendous flexibility and functionality in electromagnetic, optical, acoustic, thermal, and mechanical engineering. Furthermore, the field of metamaterials has been extended from the mere pursuit of various exotic properties towards the realization of practical devices, leading to the concepts of dynamically-reconfigurable metadevices and functional metasurfaces. The book explores the fundamental physics, design, and engineering aspects, as well as the full array of state-of-the-art applications to electronics, telecommunications, antennas, and energy harvesting. Future challenges and potential in regard to design, modeling and fabrication are also addressed.

Electromagnetic Metamaterials

Electromagnetic Metamaterials
Author :
Publisher : Springer Nature
Total Pages : 280
Release :
ISBN-10 : 9789811386497
ISBN-13 : 9811386498
Rating : 4/5 (97 Downloads)

Synopsis Electromagnetic Metamaterials by : Kazuaki Sakoda

This book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.

Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems

Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems
Author :
Publisher : IGI Global
Total Pages : 384
Release :
ISBN-10 : 9781668482889
ISBN-13 : 1668482886
Rating : 4/5 (89 Downloads)

Synopsis Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems by : Mehta, Shilpa

Metamaterials and metasurfaces are enabling modern 5G/6G wireless systems to achieve high performance while maintaining efficient costs and sizes. In the wireless industry, transmission lines play a fundamental role in the development of guided wave elements, antennas, radio frequency identification (RFID) tags, and sensors whose efficiency may be enhanced using metamaterials. Additionally, a metamaterial absorber can solve the bandwidth issue of the internet of things (IoTs) backhaul network. Metasurfaces are also potential candidates for implementing reconfigurable intelligent surfaces (RISs) due to their special wireless communication capabilities. Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems compiles and promotes metamaterials research and sheds light on how metamaterials and metasurfaces will be used in the 5G era and beyond. Covering topics such as active and passive metamaterials, metasurfaces-inspired antennas, and metamaterials for RFID and sensors, this book is ideal for researchers, students, academicians, and professionals.

Emerging Frontiers in Nonlinear Science

Emerging Frontiers in Nonlinear Science
Author :
Publisher : Springer Nature
Total Pages : 389
Release :
ISBN-10 : 9783030449926
ISBN-13 : 3030449920
Rating : 4/5 (26 Downloads)

Synopsis Emerging Frontiers in Nonlinear Science by : Panayotis G. Kevrekidis

This book explores the impact of nonlinearity on a broad range of areas, including time-honored fields such as biology, geometry, and topology, but also modern ones such as quantum mechanics, networks, metamaterials and artificial intelligence. The concept of nonlinearity is a universal feature in mathematics, physics, chemistry and biology, and is used to characterize systems whose behavior does not amount to a superposition of simple building blocks, but rather features complex and often chaotic patterns and phenomena. Each chapter of the book features a synopsis that not only recaps the recent progress in each field but also charts the challenges that lie ahead. This interdisciplinary book presents contributions from a diverse group of experts from various fields to provide an overview of each field’s past, present and future. It will appeal to both beginners and seasoned researchers in nonlinear science, numerous areas of physics (optics, quantum physics, biophysics), and applied mathematics (ODEs, PDEs, dynamical systems, machine learning) as well as engineering.

Nonlinear Active Metamaterial Surfaces

Nonlinear Active Metamaterial Surfaces
Author :
Publisher :
Total Pages : 116
Release :
ISBN-10 : OCLC:1004426371
ISBN-13 :
Rating : 4/5 (71 Downloads)

Synopsis Nonlinear Active Metamaterial Surfaces by : Sanghoon Kim

Nonlinear active metamaterial surfaces are constructed of planar periodic engineered structures in the sub-wavelength (lambda/4) scale on which the nonlinear circuit components have been populated. Unusual electromagnetic properties of the metamaterials derived by the resonant behavior of the constitutive unit cells have produced remarkable effects such as negative index of refraction, cloaking, and an electromagnetic band gap due to high impedance, while the implementations are restricted in bandwidth and polarization. The added nonlinearity from the nonlinear components can give the degree of freedom to achieve the unique and useful functionalities which could not be realized with linear and passive metamaterials. This thesis studies the theory, characterization, and capability of nonlinear active metasurfaces. The primary application of the invented metasurfaces is focused on exploring a new type of microwave absorbing structure, and the other unique electromagnetic properties. The state-of-the-art nonlinear circuits deployed on the metasurface offer the adaptive capabilities to tune the inherited electromagnetic properties. First, the theoretical limitations of the linear lossy coating are addressed to establish the necessity for the need for advanced absorbing structures. Subsequent chapters introduce the invented nonlinear metasurfaces with the different tunabilities, specifically the switchable metasurfaces that selectively absorb high power signals to avoid destructive interference to sensitive electronic devices. The self-tuning metasurfaces adaptively tune the resonance frequencies to match the frequencies of the incident waves for broadband absorbing bandwidth. The reconfigurable impedance surface has octave tunability maintaining the artificial magnetic conductor property to support an extreme broadband antenna system, and the omni-directional metamaterial surface to response all-directional incoming waves to minimize unexpected scattering effects in oblique angles.

Dielectric Metamaterials

Dielectric Metamaterials
Author :
Publisher : Woodhead Publishing
Total Pages : 310
Release :
ISBN-10 : 9780081024034
ISBN-13 : 0081024037
Rating : 4/5 (34 Downloads)

Synopsis Dielectric Metamaterials by : Igal Brener

Dielectric Metamaterials: Fundamentals, Designs and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials. Highlights a crucial link in fundamental Mie scattering theory with the latest dielectric metamaterial research spanning materials, design and applications Includes coverage of wave-front engineering and 3D metamaterials Provides computational codes for calculating and simulating Mie resonances

Fano Resonances in Optics and Microwaves

Fano Resonances in Optics and Microwaves
Author :
Publisher : Springer
Total Pages : 592
Release :
ISBN-10 : 9783319997315
ISBN-13 : 3319997319
Rating : 4/5 (15 Downloads)

Synopsis Fano Resonances in Optics and Microwaves by : Eugene Kamenetskii

This book discusses the development of Fano-based techniques and reveals the characteristic properties of various wave processes by studying interference phenomena. It explains that the interaction of discrete (localized) states with a continuum of propagation modes leads to Fano interference effects in transmission, and explores novel coherent effects such as bound states in the continuum accompanied by collapse of Fano resonance. Originating in atomic physics, Fano resonances have become one of the most appealing phenomena of wave scattering in optics, microwaves, and terahertz techniques. The generation of extremely strong and confined fields at a deep subwavelength scale, far beyond the diffraction limit, plays a central role in modern plasmonics, magnonics, and in photonic and metamaterial structures. Fano resonance effects take advantage of the coupling of these bound states with a continuum of radiative electromagnetic waves. With their unique physical properties and unusual combination of classical and quantum structures, Fano resonances have an application potential in a wide range of fields, from telecommunication to ultrasensitive biosensing, medical instrumentation and data storage. Including contributions by international experts and covering the essential aspects of Fano-resonance effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement, this book enables readers to acquire the multifaceted understanding required for these multidisciplinary challenges.