Noise in Nanoscale Semiconductor Devices

Noise in Nanoscale Semiconductor Devices
Author :
Publisher : Springer Nature
Total Pages : 724
Release :
ISBN-10 : 9783030375003
ISBN-13 : 3030375005
Rating : 4/5 (03 Downloads)

Synopsis Noise in Nanoscale Semiconductor Devices by : Tibor Grasser

This book summarizes the state-of-the-art, regarding noise in nanometer semiconductor devices. Readers will benefit from this leading-edge research, aimed at increasing reliability based on physical microscopic models. Authors discuss the most recent developments in the understanding of point defects, e.g. via ab initio calculations or intricate measurements, which have paved the way to more physics-based noise models which are applicable to a wider range of materials and features, e.g. III-V materials, 2D materials, and multi-state defects. Describes the state-of-the-art, regarding noise in nanometer semiconductor devices; Enables readers to design more reliable semiconductor devices; Offers the most up-to-date information on point defects, based on physical microscopic models.

Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices

Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 371
Release :
ISBN-10 : 9781402021701
ISBN-13 : 1402021704
Rating : 4/5 (01 Downloads)

Synopsis Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices by : Josef Sikula

A discussion of recently developed experimental methods for noise research in nanoscale electronic devices, conducted by specialists in transport and stochastic phenomena in nanoscale physics. The approach described is to create methods for experimental observations of noise sources, their localization and their frequency spectrum, voltage-current and thermal dependences. Our current knowledge of measurement methods for mesoscopic devices is summarized to identify directions for future research, related to downscaling effects. The directions for future research into fluctuation phenomena in quantum dot and quantum wire devices are specified. Nanoscale electronic devices will be the basic components for electronics of the 21st century. From this point of view the signal-to-noise ratio is a very important parameter for the device application. Since the noise is also a quality and reliability indicator, experimental methods will have a wide application in the future.

Nanoscale Devices

Nanoscale Devices
Author :
Publisher : CRC Press
Total Pages : 432
Release :
ISBN-10 : 9781351670227
ISBN-13 : 1351670220
Rating : 4/5 (27 Downloads)

Synopsis Nanoscale Devices by : Brajesh Kumar Kaushik

The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter

3D Nanoelectronic Computer Architecture and Implementation

3D Nanoelectronic Computer Architecture and Implementation
Author :
Publisher : CRC Press
Total Pages : 277
Release :
ISBN-10 : 9780429525056
ISBN-13 : 0429525052
Rating : 4/5 (56 Downloads)

Synopsis 3D Nanoelectronic Computer Architecture and Implementation by : David Crawley

It is becoming increasingly clear that the two-dimensional layout of devices on computer chips hinders the development of high-performance computer systems. Three-dimensional structures will be needed to provide the performance required to implement computationally intensive tasks. 3-D Nanoelectronic Computer Architecture and Implementation reviews the state of the art in nanoelectronic device design and fabrication and discusses the architectural aspects of 3-D designs, including the possible use of molecular wiring and carbon nanotube interconnections. This is a valuable reference for those involved in the design and development of nanoelectronic devices and technology.

Fully Depleted Silicon-On-Insulator

Fully Depleted Silicon-On-Insulator
Author :
Publisher : Elsevier
Total Pages : 386
Release :
ISBN-10 : 9780128231654
ISBN-13 : 0128231653
Rating : 4/5 (54 Downloads)

Synopsis Fully Depleted Silicon-On-Insulator by : Sorin Cristoloveanu

Fully Depleted Silicon-On-Insulator provides an in-depth presentation of the fundamental and pragmatic concepts of this increasingly important technology. There are two main technologies in the marketplace of advanced CMOS circuits: FinFETs and fully depleted silicon-on-insulators (FD-SOI). The latter is unchallenged in the field of low-power, high-frequency, and Internet-of-Things (IOT) circuits. The topic is very timely at research and development levels. Compared to existing books on SOI materials and devices, this book covers exhaustively the FD-SOI domain. Fully Depleted Silicon-On-Insulator is based on the expertise of one of the most eminent individuals in the community, Dr. Sorin Cristoloveanu, an IEEE Andrew Grove 2017 award recipient "For contributions to silicon-on-insulator technology and thin body devices." In the book, he shares key insights on the technological aspects, operation mechanisms, characterization techniques, and most promising emerging applications. Early praise for Fully Depleted Silicon-On-Insulator "It is an excellent written guide for everyone who would like to study SOI deeply, specially focusing on FD-SOI." --Dr. Katsu Izumi, Formerly at NTT Laboratories and then at Osaka Prefecture University, Japan "FDSOI technology is poised to catch an increasingly large portion of the semiconductor market. This book fits perfectly in this new paradigm [...] It covers many SOI topics which have never been described in a book before." --Professor Jean-Pierre Colinge, Formerly at TSMC and then at CEA-LETI, Grenoble, France "This book, written by one of the true experts and pioneers in the silicon-on-insulator field, is extremely timely because of the growing footprint of FD-SOI in modern silicon technology, especially in IoT applications. Written in a delightfully informal style yet comprehensive in its coverage, the book describes both the device physics underpinning FD-SOI technology and the cutting-edge, perhaps even futuristic devices enabled by it." --Professor Alexander Zaslavsky, Brown University, USA "A superbly written book on SOI technology by a master in the field." --Professor Yuan Taur, University of California, San Diego, USA "The author is a world-top researcher of SOI device/process technology. This book is his masterpiece and important for the FD-SOI archive. The reader will learn much from the book." --Professor Hiroshi Iwai, National Yang Ming Chiao Tung University, Taiwan From the author "It is during our global war against the terrifying coalition of corona and insidious computer viruses that this book has been put together. Continuous enlightenment from FD-SOI helped me cross this black and gray period. I shared a lot of myself in this book. The rule of the game was to keep the text light despite the heavy technical content. There are even tentative FD-SOI hieroglyphs on the front cover, composed of curves discussed in the book." - Written by a top expert in the silicon-on-insulator community and IEEE Andrew Grove 2017 award recipient - Comprehensively addresses the technology aspects, operation mechanisms and electrical characterization techniques for FD-SOI devices - Discusses FD-SOI's most promising device structures for memory, sensing and emerging applications

Noise Coupling in System-on-Chip

Noise Coupling in System-on-Chip
Author :
Publisher : CRC Press
Total Pages : 555
Release :
ISBN-10 : 9781351642781
ISBN-13 : 1351642782
Rating : 4/5 (81 Downloads)

Synopsis Noise Coupling in System-on-Chip by : Thomas Noulis

Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.

Springer Handbook of Semiconductor Devices

Springer Handbook of Semiconductor Devices
Author :
Publisher : Springer Nature
Total Pages : 1680
Release :
ISBN-10 : 9783030798277
ISBN-13 : 3030798275
Rating : 4/5 (77 Downloads)

Synopsis Springer Handbook of Semiconductor Devices by : Massimo Rudan

This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.

Nanoscale Semiconductor Memories

Nanoscale Semiconductor Memories
Author :
Publisher : CRC Press
Total Pages : 448
Release :
ISBN-10 : 9781466560611
ISBN-13 : 1466560614
Rating : 4/5 (11 Downloads)

Synopsis Nanoscale Semiconductor Memories by : Santosh K. Kurinec

Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Simulation of Semiconductor Processes and Devices 2007

Simulation of Semiconductor Processes and Devices 2007
Author :
Publisher : Springer Science & Business Media
Total Pages : 472
Release :
ISBN-10 : 9783211728604
ISBN-13 : 3211728600
Rating : 4/5 (04 Downloads)

Synopsis Simulation of Semiconductor Processes and Devices 2007 by : Tibor Grasser

The "Twelfth International Conference on Simulation of Semiconductor Processes and Devices" (SISPAD 2007) continues a long series of conferences and is held in September 2007 at the TU Wien, Vienna, Austria. The conference is the leading forum for Technology Computer-Aided Design (TCAD) held alternatingly in the United States, Japan, and Europe. The first SISPAD conference took place in Tokyo in 1996 as the successor to three preceding conferences NUPAD, VPAD, and SISDEP. With its longstanding history SISPAD provides a world-wide forum for the presentaƯ tion and discussion of outstanding recent advances and developments in the field of numerical process and device simulation. Driven by the ongoing miniaturization in semiconductor fabrication technology, the variety of topics discussed at this meeting reflects the ever-growing complexity of the subject. Apart from the classic topics like process, device, and interconnect simulation, mesh generation, a broad specƯ trum of numerical issues, and compact modeling, new simulation approaches like atomistic and first-principles methods have emerged as important fields of research and are currently making their way into standard TCAD suites

Introduction to the Physics of Electron Emission

Introduction to the Physics of Electron Emission
Author :
Publisher : John Wiley & Sons
Total Pages : 714
Release :
ISBN-10 : 9781119051893
ISBN-13 : 1119051894
Rating : 4/5 (93 Downloads)

Synopsis Introduction to the Physics of Electron Emission by : Kevin L. Jensen

A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams.