Noether's Theorem and Symmetry

Noether's Theorem and Symmetry
Author :
Publisher : MDPI
Total Pages : 186
Release :
ISBN-10 : 9783039282340
ISBN-13 : 3039282344
Rating : 4/5 (40 Downloads)

Synopsis Noether's Theorem and Symmetry by : P.G.L. Leach

In Noether's original presentation of her celebrated theorem of 1918, allowances were made for the dependence of the coefficient functions of the differential operator which generated the infinitesimal transformation of the Action Integral upon the derivatives of the dependent variable(s), the so-called generalized, or dynamical, symmetries. A similar allowance is to be found in the variables of the boundary function, often termed a gauge function by those who have not read the original paper. This generality was lost after texts such as those of Courant and Hilbert or Lovelock and Rund confined attention to only point transformations. In recent decades, this diminution of the power of Noether's Theorem has been partly countered, in particular, in the review of Sarlet and Cantrijn. In this Special Issue, we emphasize the generality of Noether's Theorem in its original form and explore the applicability of even more general coefficient functions by allowing for nonlocal terms. We also look at the application of these more general symmetries to problems in which parameters or parametric functions have a more general dependence upon the independent variables.

Emmy Noether's Wonderful Theorem

Emmy Noether's Wonderful Theorem
Author :
Publisher : JHU Press
Total Pages : 338
Release :
ISBN-10 : 9781421422688
ISBN-13 : 1421422689
Rating : 4/5 (88 Downloads)

Synopsis Emmy Noether's Wonderful Theorem by : Dwight E. Neuenschwander

One of the most important—and beautiful—mathematical solutions ever devised, Noether’s theorem touches on every aspect of physics. "In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what was known about the conservation of energy. Knowing of her expertise in invariance theory, they requested Noether’s help. To solve the problem, she developed a novel theorem, applicable across all of physics, which relates conservation laws to continuous symmetries—one of the most important pieces of mathematical reasoning ever developed. Noether’s “first” and “second” theorem was published in 1918. The first theorem relates symmetries under global spacetime transformations to the conservation of energy and momentum, and symmetry under global gauge transformations to charge conservation. In continuum mechanics and field theories, these conservation laws are expressed as equations of continuity. The second theorem, an extension of the first, allows transformations with local gauge invariance, and the equations of continuity acquire the covariant derivative characteristic of coupled matter-field systems. General relativity, it turns out, exhibits local gauge invariance. Noether’s theorem also laid the foundation for later generations to apply local gauge invariance to theories of elementary particle interactions. In Dwight E. Neuenschwander’s new edition of Emmy Noether’s Wonderful Theorem, readers will encounter an updated explanation of Noether’s “first” theorem. The discussion of local gauge invariance has been expanded into a detailed presentation of the motivation, proof, and applications of the “second” theorem, including Noether’s resolution of concerns about general relativity. Other refinements in the new edition include an enlarged biography of Emmy Noether’s life and work, parallels drawn between the present approach and Noether’s original 1918 paper, and a summary of the logic behind Noether’s theorem.

The Noether Theorems

The Noether Theorems
Author :
Publisher : Springer Science & Business Media
Total Pages : 211
Release :
ISBN-10 : 9780387878683
ISBN-13 : 0387878688
Rating : 4/5 (83 Downloads)

Synopsis The Noether Theorems by : Yvette Kosmann-Schwarzbach

In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noether's achievements were remembered, and sometimes figure in quick historical accounts of the time. This book carries a translation of Noether's original paper into English, and then describes the strange history of its reception and the responses to her work. Ultimately the theorems became decisive in a shift from basing fundamental physics on conservations laws to basing it on symmetries, or at the very least, in thoroughly explaining the connection between these two families of ideas. The real significance of this book is that it shows very clearly how long it took before mathematicians and physicists began to recognize the seminal importance of Noether's results. This book is thoroughly researched and provides careful documentation of the textbook literature. Kosmann-Schwarzbach has thus thrown considerable light on this slow dance in which the mathematical tools necessary to study symmetry properties and conservation laws were apparently provided long before the orchestra arrives and the party begins.

Noether's Theorems

Noether's Theorems
Author :
Publisher : Springer
Total Pages : 304
Release :
ISBN-10 : 9789462391710
ISBN-13 : 9462391718
Rating : 4/5 (10 Downloads)

Synopsis Noether's Theorems by : Gennadi Sardanashvily

The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

The Philosophy and Physics of Noether's Theorems

The Philosophy and Physics of Noether's Theorems
Author :
Publisher : Cambridge University Press
Total Pages : 388
Release :
ISBN-10 : 9781108786812
ISBN-13 : 1108786812
Rating : 4/5 (12 Downloads)

Synopsis The Philosophy and Physics of Noether's Theorems by : James Read

In 1918, Emmy Noether, in her paper Invariante Variationsprobleme, proved two theorems (and their converses) on variational problems that went on to revolutionise theoretical physics. 100 years later, the mathematics of Noether's theorems continues to be generalised, and the physical applications of her results continue to diversify. This centenary volume brings together world-leading historians, philosophers, physicists, and mathematicians in order to clarify the historical context of this work, its foundational and philosophical consequences, and its myriad physical applications. Suitable for advanced undergraduate and graduate students and professional researchers, this is a go-to resource for those wishing to understand Noether's work on variational problems and the profound applications which it finds in contemporary physics.

Physics from Symmetry

Physics from Symmetry
Author :
Publisher : Springer
Total Pages : 294
Release :
ISBN-10 : 9783319666310
ISBN-13 : 3319666312
Rating : 4/5 (10 Downloads)

Synopsis Physics from Symmetry by : Jakob Schwichtenberg

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.

Symmetry and the Beautiful Universe

Symmetry and the Beautiful Universe
Author :
Publisher : Prometheus Books
Total Pages : 363
Release :
ISBN-10 : 9781615920419
ISBN-13 : 1615920412
Rating : 4/5 (19 Downloads)

Synopsis Symmetry and the Beautiful Universe by : Leon M. Lederman

When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.

Why Beauty Is Truth

Why Beauty Is Truth
Author :
Publisher :
Total Pages : 306
Release :
ISBN-10 : 9780465082377
ISBN-13 : 0465082378
Rating : 4/5 (77 Downloads)

Synopsis Why Beauty Is Truth by : Ian Stewart

Physics.

What Is Life?

What Is Life?
Author :
Publisher :
Total Pages : 128
Release :
ISBN-10 : 1922310263
ISBN-13 : 9781922310262
Rating : 4/5 (63 Downloads)

Synopsis What Is Life? by : Sir Paul Nurse

Life is all around us, abundant and diverse. It is truly a marvel. But what does it actually mean to be alive, and how do we decide what is living and what is not? After a lifetime of studying life, Nobel Prize-winner Sir Paul Nurse, one of the world's leading scientists, has taken on the challenge of defining it. Written with great personality and charm, his accessible guide takes readers on a journey to discover biology's five great building blocks, demonstrates how biology has changed and is changing the world, and reveals where research is headed next. To survive all the challenges that face the human race today - population growth, pandemics, food shortages, climate change - it is vital that we first understand what life is. Never before has the question 'What is life?' been answered with such insight, clarity, and humanity, and never at a time more urgent than now. 'Paul Nurse is about as distinguished a scientist as there could be. He is also a great communicator. This book explains, in a way that is both clear and elegant, how the processes of life unfold, and does as much as science can to answer the question posed by the title. It's also profoundly important, at a time when the world is connected so closely that any new illness can sweep from nation to nation with immense speed, that all of us - including politicians - should be as well-informed as possible. This book provides the sort of clarity and understanding that could save many thousands of lives. I learned a great deal, and I enjoyed the process enormously.' -Sir Philip Pullman 'A nearly perfect guide to the wonder and complexity of existence.' -Bill Bryson 'Nurse provides a concise, lucid response to an age-old question. His writing is not just informed by long experience, but also wise, visionary, and personal. I read the book in one sitting, and felt exhilarated by the end, as though I'd run for miles - from the author's own garden into the interior of the cell, back in time to humankind's most distant ancestors, and through the laboratory of a dedicated scientist at work on what he most loves to do.' -Dava Sobel

Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 099883727X
ISBN-13 : 9780998837277
Rating : 4/5 (7X Downloads)

Synopsis Variational Principles in Classical Mechanics by : Douglas Cline

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.