Nanoscale MOS Transistors

Nanoscale MOS Transistors
Author :
Publisher : Cambridge University Press
Total Pages : 489
Release :
ISBN-10 : 9781139494380
ISBN-13 : 1139494384
Rating : 4/5 (80 Downloads)

Synopsis Nanoscale MOS Transistors by : David Esseni

Written from an engineering standpoint, this book provides the theoretical background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOS nanoscale transistors. A wealth of applications, illustrations and examples connect the methods described to all the latest issues in nanoscale MOSFET design. Key areas covered include: • Transport in arbitrary crystal orientations and strain conditions, and new channel and gate stack materials • All the relevant transport regimes, ranging from low field mobility to quasi-ballistic transport, described using a single modeling framework • Predictive capabilities of device models, discussed with systematic comparisons to experimental results

Carrier Transport in Nanoscale MOS Transistors

Carrier Transport in Nanoscale MOS Transistors
Author :
Publisher : John Wiley & Sons
Total Pages : 265
Release :
ISBN-10 : 9781118871720
ISBN-13 : 1118871723
Rating : 4/5 (20 Downloads)

Synopsis Carrier Transport in Nanoscale MOS Transistors by : Hideaki Tsuchiya

A comprehensive advanced level examination of the transport theory of nanoscale devices Provides advanced level material of electron transport in nanoscale devices from basic principles of quantum mechanics through to advanced theory and various numerical techniques for electron transport Combines several up-to-date theoretical and numerical approaches in a unified manner, such as Wigner-Boltzmann equation, the recent progress of carrier transport research for nanoscale MOS transistors, and quantum correction approximations The authors approach the subject in a logical and systematic way, reflecting their extensive teaching and research backgrounds

Nanoscale Transistors

Nanoscale Transistors
Author :
Publisher : Springer Science & Business Media
Total Pages : 223
Release :
ISBN-10 : 9780387280035
ISBN-13 : 0387280030
Rating : 4/5 (35 Downloads)

Synopsis Nanoscale Transistors by : Mark Lundstrom

To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules

Fundamentals of Bias Temperature Instability in MOS Transistors

Fundamentals of Bias Temperature Instability in MOS Transistors
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9788132225089
ISBN-13 : 8132225082
Rating : 4/5 (89 Downloads)

Synopsis Fundamentals of Bias Temperature Instability in MOS Transistors by : Souvik Mahapatra

This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.

Advanced Nanoscale MOSFET Architectures

Advanced Nanoscale MOSFET Architectures
Author :
Publisher : John Wiley & Sons
Total Pages : 340
Release :
ISBN-10 : 9781394188949
ISBN-13 : 1394188943
Rating : 4/5 (49 Downloads)

Synopsis Advanced Nanoscale MOSFET Architectures by : Kalyan Biswas

Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.

The Physics and Modeling of Mosfets

The Physics and Modeling of Mosfets
Author :
Publisher : World Scientific
Total Pages : 381
Release :
ISBN-10 : 9789812812056
ISBN-13 : 9812812059
Rating : 4/5 (56 Downloads)

Synopsis The Physics and Modeling of Mosfets by : Mitiko Miura-Mattausch

This volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation.

The MOS System

The MOS System
Author :
Publisher : Cambridge University Press
Total Pages : 369
Release :
ISBN-10 : 9781107005938
ISBN-13 : 1107005930
Rating : 4/5 (38 Downloads)

Synopsis The MOS System by : Olof Engström

A detailed, up-to-date guide to modern MOS structures, describing key tools, cutting-edge models, novel phenomena and challenges for future development. Abstract concepts are supported by practical examples and presented alongside recent theoretical and experimental results. An ideal companion for researchers, graduate students and industrial development engineers.

Introduction to Nano

Introduction to Nano
Author :
Publisher : Springer
Total Pages : 234
Release :
ISBN-10 : 9783662473146
ISBN-13 : 3662473143
Rating : 4/5 (46 Downloads)

Synopsis Introduction to Nano by : Amretashis Sengupta

This book covers the basics of nanotechnology and provides a solid understanding of the subject. Starting from a brush-up of the basic quantum mechanics and materials science, the book helps to gradually build up understanding of the various effects of quantum confinement, optical-electronic properties of nanoparticles and major nanomaterials. The book covers the various physical, chemical and hybrid methods of nanomaterial synthesis and nanofabrication as well as advanced characterization techniques. It includes chapters on the various applications of nanoscience and nanotechnology. It is written in a simple form, making it useful for students of physical and material sciences.

Planar Double-Gate Transistor

Planar Double-Gate Transistor
Author :
Publisher : Springer Science & Business Media
Total Pages : 215
Release :
ISBN-10 : 9781402093418
ISBN-13 : 1402093411
Rating : 4/5 (18 Downloads)

Synopsis Planar Double-Gate Transistor by : Amara Amara

Until the 1990s, the reduction of the minimum feature sizes used to fabricate in- grated circuits, called “scaling”, has highlighted serious advantages as integration density, speed, power consumption, functionality and cost. Direct consequence was the decrease of cost-per-function, so the electronic productivity has largely progressed in this period. Another usually cited trend is the evolution of the in- gration density as expressed by the well-know Moore’s Law in 1975: the number of devices per chip doubles every 2 years. This evolution has allowed improving signi?cantly the circuit complexity, offering a great computing power in the case of microprocessor, for example. However, since few years, signi?cant issues appeared such as the increase of the circuit heating, device complexity, variability and dif?culties to improve the integration density. These new trends generate an important growth in development and production costs. Though is it, since 40 years, the evolution of the microelectronics always f- lowed the Moore’s law and each dif?culty has found a solution.

Nanoscale Devices

Nanoscale Devices
Author :
Publisher : CRC Press
Total Pages : 414
Release :
ISBN-10 : 9781351670210
ISBN-13 : 1351670212
Rating : 4/5 (10 Downloads)

Synopsis Nanoscale Devices by : Brajesh Kumar Kaushik

The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter