Municipal Solid Waste to Energy Conversion Processes

Municipal Solid Waste to Energy Conversion Processes
Author :
Publisher : John Wiley & Sons
Total Pages : 402
Release :
ISBN-10 : 9781118029275
ISBN-13 : 1118029275
Rating : 4/5 (75 Downloads)

Synopsis Municipal Solid Waste to Energy Conversion Processes by : Gary C. Young

MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES A TECHNICAL AND ECONOMIC REVIEW OF EMERGING WASTE DISPOSAL TECHNOLOGIES Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.

Waste to Energy Conversion Technology

Waste to Energy Conversion Technology
Author :
Publisher : Elsevier
Total Pages : 257
Release :
ISBN-10 : 9780857096364
ISBN-13 : 0857096362
Rating : 4/5 (64 Downloads)

Synopsis Waste to Energy Conversion Technology by : Naomi B Klinghoffer

Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion.Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies.Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. - Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants - Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification - Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks

Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies

Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies
Author :
Publisher : CRC Press
Total Pages : 249
Release :
ISBN-10 : 9781498777049
ISBN-13 : 149877704X
Rating : 4/5 (49 Downloads)

Synopsis Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies by : P. Jayarama Reddy

This book presents an overview of municipal solid waste recycling, and how it can be used to generate clean power, transport fuels that can substitute fossil fuels, and value-based chemicals with minimal environmental impact. It also explains how hazardous wastes and sewage sludge can be treated and disposed of without affecting human and environmental health. A full discussion of established thermal conversion technologies that generate heat, electricity, liquid fuels and useful chemicals from solid waste and supporting case studies describing global waste-to-energy plants in operation make this work highly suited to an introductory course on waste thermal conversion processes.

Handbook of Solid Waste Management

Handbook of Solid Waste Management
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 9811575258
ISBN-13 : 9789811575259
Rating : 4/5 (58 Downloads)

Synopsis Handbook of Solid Waste Management by : Chinnappan Baskar

Waste Incineration and Public Health

Waste Incineration and Public Health
Author :
Publisher : National Academies Press
Total Pages : 336
Release :
ISBN-10 : 9780309063715
ISBN-13 : 030906371X
Rating : 4/5 (15 Downloads)

Synopsis Waste Incineration and Public Health by : National Research Council

Incineration has been used widely for waste disposal, including household, hazardous, and medical wasteâ€"but there is increasing public concern over the benefits of combusting the waste versus the health risk from pollutants emitted during combustion. Waste Incineration and Public Health informs the emerging debate with the most up-to-date information available on incineration, pollution, and human healthâ€"along with expert conclusions and recommendations for further research and improvement of such areas as risk communication. The committee provides details on: Processes involved in incineration and how contaminants are released. Environmental dynamics of contaminants and routes of human exposure. Tools and approaches for assessing possible human health effects. Scientific concerns pertinent to future regulatory actions. The book also examines some of the social, psychological, and economic factors that affect the communities where incineration takes place and addresses the problem of uncertainty and variation in predicting the health effects of incineration processes.

Municipal Solid Waste Incineration

Municipal Solid Waste Incineration
Author :
Publisher : World Bank Publications
Total Pages : 118
Release :
ISBN-10 : 0821346687
ISBN-13 : 9780821346686
Rating : 4/5 (87 Downloads)

Synopsis Municipal Solid Waste Incineration by : T. Rand

Ever increasing amounts of solid waste and dwindling space for disposal is a problem reaching crisis level in many of the world's largest urban areas. Incineration as an alternative to landfill has come under scrutiny, though the capital and operating costs generally exceed those associated with landfill. This report provides background information for the "Decision-maker' guide to municipal solid waste (MSW) incineration". Key criteria for a solid waste incineration scheme are identified, and the report gives decision makers information on how to investigate and assess the degree to which they are fulfilled.

Waste-to-Energy

Waste-to-Energy
Author :
Publisher : William Andrew
Total Pages : 178
Release :
ISBN-10 : 9781437778724
ISBN-13 : 1437778720
Rating : 4/5 (24 Downloads)

Synopsis Waste-to-Energy by : Marc J. Rogoff

This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects - Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99% - With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE - The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE

The Biogas Handbook

The Biogas Handbook
Author :
Publisher : Elsevier
Total Pages : 507
Release :
ISBN-10 : 9780857094988
ISBN-13 : 085709498X
Rating : 4/5 (88 Downloads)

Synopsis The Biogas Handbook by : Arthur Wellinger

With increasing pressures to utilize wastes effectively and sustainably, biogas production represents one of the most important routes towards reaching renewable energy targets. This comprehensive reference on the development and deployment of biogas supply chains and technology reviews the role of biogas in the energy mix and outlines the range of biomass and waste resources for biogas production. Contributors provide detailed coverage of anaerobic digestion for the production of biogas and review the utilization of biogas for various applications. They consider all aspects in the biogas production chain from the origin of the biomass feedstocks, feedstock selection and preparation, the anaerobic digestion process, biogas plant equipment design and operation, through to utilization of the biogas for energy production and the residue, the digestate, which can be used as a biofertilizer. The book also addresses biogas utilization, and explores environmental impacts and commercial market applications. Table of Contents: Biogas as an energy option: An overview Part 1 Biomass resources, feedstock treatment and biogas production: Biomass resources for biogas production; Analysis and characterisation of biogas feedstocks; Storage and pre-treatment of substrates for biogas production; Fundamental science and engineering of the anaerobic digestion process for biogas production; Optimisation of biogas yields from anaerobic digestion by feedstock type; Anaerobic digestion as a key technology for biomass valorisation: Roles and contribution to the energy balance of biofuel chains Part 2 Plant design, engineering, process optimisation and digestate utilization: Design and engineering of biogas plants; Energy flows in biogas plants: Analysis and implications for plant design; Process control in biogas plants; Methane emissions in biogas production; Biogas digestate quality and utilization; Land application of digestate Part 3 Biogas utilisation: international experience and best practice: Biogas cleaning; Biogas up-grading to biomethane; Biomethane injection into natural gas networks; Generation of heat and power from biogas for stationery applications: Boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells; Biomethane for transport applications; Market development and certification schemes for biomethane

Gasification of Waste Materials

Gasification of Waste Materials
Author :
Publisher : Academic Press
Total Pages : 165
Release :
ISBN-10 : 9780128127179
ISBN-13 : 0128127171
Rating : 4/5 (79 Downloads)

Synopsis Gasification of Waste Materials by : Simona Ciuta

Gasification of Waste Materials: Technologies for Generating Energy, Gas and Chemicals from MSW, Biomass, Non-recycled Plastics, Sludges and Wet Solid Wastes explores the most recent gasification technologies developing worldwide to convert waste solids to energy and synthesis gas and chemical products. The authors examine the thermodynamic aspects, accepted reaction mechanisms and kinetic constraints of using municipal solid waste (MSW), biomass, non-recycled plastics (NRP), sludges and wet solid wastes as feedstock. They identify the distinctions between pyrolysis, gasification, plasma, hydrothermal gasification, and supercritical systems. A comprehensive summary of laboratory and demonstration activities is presented, as well as field scale systems that have been in operation using solid waste streams as input, highlighting their areas of disconnect and alignment. The book also provides a summary of information on emissions from the stack, comparing them with other thermal conversion systems using similar feedstock. It then goes on to assess the areas that must be improved to ensure gasification systems become as successful as combustion systems operating on waste streams, ranging from feedstock processing to gasifier output gas clean-up, downstream system requirements and corrosion. The economics and future projections for waste gasification systems are also discussed. For its consolidation of the current technical knowledge, this text is recommended for engineering researchers, graduate students, industry professionals, municipal engineers and decision makers when planning, designing and deploying waste to energy projects, especially those using MSW as feedstock. - Provides field demonstrations of large scale systems, their results and the challenges that need to be overcome when developing commercial applications and possible solutions - Presents the most recent technologies in lab and demonstration scale - Examines the critical development needs and real life challenges for the deployment of waste to energy technologies - Provides information on the economics and sustainability of these technologies, as well as their future perspectives

Biomass Conversion Processes for Energy and Fuels

Biomass Conversion Processes for Energy and Fuels
Author :
Publisher : Springer Science & Business Media
Total Pages : 420
Release :
ISBN-10 : 9781475703016
ISBN-13 : 1475703015
Rating : 4/5 (16 Downloads)

Synopsis Biomass Conversion Processes for Energy and Fuels by : Samir S. Sofer

Countless pages have been written on alternative energy sources since the fall of 1973 when our dependence on fossil petroleum resources became a grim reality. One such alternative is the use of biomass for producing energy and liquid and gaseous fuels. The term "biomass" generally refers to renewable organic matter generated by plants through photosynthesis. Thus trees, agri cultural crops, and aquatic plants are prime sources of biomass. Furthermore, as these sources of biomass are harvested and processed into commercial prod ucts, residues and wastes are generated. These, together with municipal solid wastes, not only add to the total organic raw material base that can be utilized for energy purposes but they also need to be removed for environmental reasons. Biomass has been used since antiquity for energy and material needs. In is still one of the most sought-after energy sources in most of the fact, firewood world. Furthermore, wood was still a dominant energy source in the U. S. only a hundred years ago (equal with coal). Currently, biomass contributes about 15 2 quadrillion Btu (l quad = 10 Btu) of energy to our total energy consump tion of about 78 quad. Two quad may not seem large when compared to the contribution made by petroleum (38 quad) or natural gas (20 quad), but bio mass is nearly comparable to nuclear energy (2. 7 quad).