Multivariate Approximation for solving ODE and PDE

Multivariate Approximation for solving ODE and PDE
Author :
Publisher : MDPI
Total Pages : 202
Release :
ISBN-10 : 9783039436033
ISBN-13 : 3039436031
Rating : 4/5 (33 Downloads)

Synopsis Multivariate Approximation for solving ODE and PDE by : Clemente Cesarano

This book presents collective works published in the recent Special Issue (SI) entitled "Multivariate Approximation for Solving ODE and PDE". These papers describe the different approaches and related objectives in the field of multivariate approximation. The articles in fact present specific contents of numerical methods for the analysis of the approximation, as well as the study of ordinary differential equations (for example oscillating with delay) or that of partial differential equations of the fractional order, but all linked by the objective to present analytical or numerical techniques for the simplification of the study of problems involving relationships that are not immediately computable, thus allowing to establish a connection between different fields of mathematical analysis and numerical analysis through different points of view and investigation. The present contents, therefore, describe the multivariate approximation theory, which is today an increasingly active research area that deals with a multitude of problems in a wide field of research. This book brings together a collection of inter-/multi-disciplinary works applied to many areas of applied mathematics in a coherent manner.

Multivariate Approximation Theory

Multivariate Approximation Theory
Author :
Publisher : SIAM
Total Pages : 74
Release :
ISBN-10 : 9780898712070
ISBN-13 : 0898712076
Rating : 4/5 (70 Downloads)

Synopsis Multivariate Approximation Theory by : E. W. Cheney

This monograph deals with the development of algorithms or the derivation of approximations from linear projections.

Solving PDEs in Python

Solving PDEs in Python
Author :
Publisher : Springer
Total Pages : 152
Release :
ISBN-10 : 9783319524627
ISBN-13 : 3319524623
Rating : 4/5 (27 Downloads)

Synopsis Solving PDEs in Python by : Hans Petter Langtangen

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations
Author :
Publisher : Cambridge University Press
Total Pages : 327
Release :
ISBN-10 : 9781316510087
ISBN-13 : 1316510085
Rating : 4/5 (87 Downloads)

Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Approximation of Continuously Differentiable Functions

Approximation of Continuously Differentiable Functions
Author :
Publisher : Elsevier
Total Pages : 257
Release :
ISBN-10 : 9780080872414
ISBN-13 : 0080872417
Rating : 4/5 (14 Downloads)

Synopsis Approximation of Continuously Differentiable Functions by : J.G. Llavona

This self-contained book brings together the important results of a rapidly growing area.As a starting point it presents the classic results of the theory. The book covers such results as: the extension of Wells' theorem and Aron's theorem for the fine topology of order m; extension of Bernstein's and Weierstrass' theorems for infinite dimensional Banach spaces; extension of Nachbin's and Whitney's theorem for infinite dimensional Banach spaces; automatic continuity of homomorphisms in algebras of continuously differentiable functions, etc.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations
Author :
Publisher : Cambridge University Press
Total Pages : 305
Release :
ISBN-10 : 9781107163225
ISBN-13 : 1107163226
Rating : 4/5 (25 Downloads)

Synopsis Numerical Solution of Differential Equations by : Zhilin Li

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Spectral Methods Using Multivariate Polynomials On The Unit Ball

Spectral Methods Using Multivariate Polynomials On The Unit Ball
Author :
Publisher : CRC Press
Total Pages : 254
Release :
ISBN-10 : 9781000725988
ISBN-13 : 1000725987
Rating : 4/5 (88 Downloads)

Synopsis Spectral Methods Using Multivariate Polynomials On The Unit Ball by : Kendall Atkinson

Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.

A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations
Author :
Publisher : Elsevier
Total Pages : 272
Release :
ISBN-10 : 9781483276601
ISBN-13 : 1483276600
Rating : 4/5 (01 Downloads)

Synopsis A Second Course in Elementary Differential Equations by : Paul Waltman

A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 636
Release :
ISBN-10 : 9783319020990
ISBN-13 : 3319020994
Rating : 4/5 (90 Downloads)

Synopsis Introduction to Partial Differential Equations by : Peter J. Olver

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.