Micro And Nano Systems For Biophysical Studies Of Cells And Small Organisms
Download Micro And Nano Systems For Biophysical Studies Of Cells And Small Organisms full books in PDF, epub, and Kindle. Read online free Micro And Nano Systems For Biophysical Studies Of Cells And Small Organisms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Xinyu Liu |
Publisher |
: Academic Press |
Total Pages |
: 406 |
Release |
: 2021-08-14 |
ISBN-10 |
: 9780128242438 |
ISBN-13 |
: 0128242434 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms by : Xinyu Liu
Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms provides a comprehensive introduction to the state-of-the-art micro and nano systems that have recently been developed and applied to biophysical studies of cells and small organisms. These micro and nano systems span from microelectromechanical systems (MEMS) and microfluidic devices to robotic micro-nanomanipulation systems. These biophysical studies range from cell mechanics to the neural science of worms and Drosophila. This book will help readers understand the fundamentals surrounding the development of these tools and teach them the most recent advances in cellular and organismal biophysics enabled by these technologies. - Comprehensive coverage of micro and nano-system technology and application to biophysical studies of cells and small organisms. - Highlights the most recent advances in cellular and organismal biophysics enabled by micro and nano systems. - Insightful outlook on future directions and trends in each chapter covering a sub-area of the book topic.
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 171 |
Release |
: 1999-09-13 |
ISBN-10 |
: 9780309172745 |
ISBN-13 |
: 0309172748 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Size Limits of Very Small Microorganisms by : National Research Council
How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.
Author |
: Chang Lu |
Publisher |
: Springer |
Total Pages |
: 382 |
Release |
: 2016-05-14 |
ISBN-10 |
: 9783319300191 |
ISBN-13 |
: 3319300199 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Microfluidic Methods for Molecular Biology by : Chang Lu
This book covers the state-of-the-art research on molecular biology assays and molecular techniques enabled or enhanced by microfluidic platforms. Topics covered include microfluidic methods for cellular separations and single cell studies, droplet-based approaches to study protein expression and forensics, and microfluidic in situ hybridization for RNA analysis. Key molecular biology studies using model organisms are reviewed in detail. This is an ideal book for students and researchers in the microfluidics and molecular biology fields as well as engineers working in the biotechnology industry. This book also: Reviews exhaustively the latest techniques for single-cell genetic, epigenetic, metabolomic, and proteomic analysis Illustrates microfluidic approaches for inverse metabolic engineering, as well as analysis of circulating exosomes Broadens readers’ understanding of microfluidics convection-based PCR technology, microfluidic RNA-seq, and microfluidics for robust mobile diagnostics
Author |
: Ralph J. Greenspan |
Publisher |
: CSHL Press |
Total Pages |
: 212 |
Release |
: 2004 |
ISBN-10 |
: 0879697113 |
ISBN-13 |
: 9780879697112 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Fly Pushing by : Ralph J. Greenspan
A second edition of the classic handbook has become a standard in the Drosophila field. This edition is expanded to include topics in which classical genetic strategies have been augmented with new molecular tools. Included are such new techniques as homologous recombination, RNAi, new mapping techniques, and new mosaic marking techniques.
Author |
: Oliver A Williams |
Publisher |
: Royal Society of Chemistry |
Total Pages |
: 552 |
Release |
: 2014-03-18 |
ISBN-10 |
: 9781782621270 |
ISBN-13 |
: 178262127X |
Rating |
: 4/5 (70 Downloads) |
Synopsis Nanodiamond by : Oliver A Williams
The exceptional mechanical, optical, surface and biocompatibility properties of nanodiamond have gained it much interest. Exhibiting the outstanding bulk properties of diamond at the nanoscale in the form of a film or small particle makes it an inexpensive alternative for many applications. Nanodiamond is the first comprehensive book on the subject. The book reviews the state of the art of nanodiamond films and particles covering the fundamentals of growth, purification and spectroscopy and some of its diverse applications such as MEMS, drug delivery and biomarkers and biosensing. Specific chapters include the theory of nanodiamond, diamond nucleation, low temperature growth, diamond nanowires, electrochemistry of nanodiamond, nanodiamond flexible implants, and cell labelling with nanodiamond particles. Edited by a leading expert in nanodiamonds, this is the perfect resource for those new to, and active in, nanodiamond research and those interested in its applications.
Author |
: C. Ross Ethier |
Publisher |
: Cambridge University Press |
Total Pages |
: 10 |
Release |
: 2007-03-12 |
ISBN-10 |
: 9781139461825 |
ISBN-13 |
: 1139461826 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Introductory Biomechanics by : C. Ross Ethier
Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.
Author |
: Thomas Laurell |
Publisher |
: Royal Society of Chemistry |
Total Pages |
: 593 |
Release |
: 2014-12-08 |
ISBN-10 |
: 9781849737067 |
ISBN-13 |
: 1849737061 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Microscale Acoustofluidics by : Thomas Laurell
The manipulation of cells and microparticles within microfluidic systems using external forces is valuable for many microscale analytical and bioanalytical applications. Acoustofluidics is the ultrasound-based external forcing of microparticles with microfluidic systems. It has gained much interest because it allows for the simple label-free separation of microparticles based on their mechanical properties without affecting the microparticles themselves. Microscale Acoustofluidics provides an introduction to the field providing the background to the fundamental physics including chapters on governing equations in microfluidics and perturbation theory and ultrasound resonances, acoustic radiation force on small particles, continuum mechanics for ultrasonic particle manipulation, and piezoelectricity and application to the excitation of acoustic fields for ultrasonic particle manipulation. The book also provides information on the design and characterization of ultrasonic particle manipulation devices as well as applications in acoustic trapping and immunoassays. Written by leading experts in the field, the book will appeal to postgraduate students and researchers interested in microfluidics and lab-on-a-chip applications.
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 171 |
Release |
: 1999-10-13 |
ISBN-10 |
: 9780309066341 |
ISBN-13 |
: 0309066344 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Size Limits of Very Small Microorganisms by : National Research Council
How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.
Author |
: Stefaan Verbruggen |
Publisher |
: Academic Press |
Total Pages |
: 530 |
Release |
: 2018-08-09 |
ISBN-10 |
: 9780128129531 |
ISBN-13 |
: 0128129530 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Mechanobiology in Health and Disease by : Stefaan Verbruggen
Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 122 |
Release |
: 2010-03-25 |
ISBN-10 |
: 9780309147514 |
ISBN-13 |
: 0309147514 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Research at the Intersection of the Physical and Life Sciences by : National Research Council
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.