Mesoscopic Physics of Electrons and Photons

Mesoscopic Physics of Electrons and Photons
Author :
Publisher : Cambridge University Press
Total Pages : 479
Release :
ISBN-10 : 9781139463997
ISBN-13 : 1139463993
Rating : 4/5 (97 Downloads)

Synopsis Mesoscopic Physics of Electrons and Photons by : Eric Akkermans

Quantum mesoscopic physics covers a whole class in interference effects related to the propagation of waves in complex and random media. These effects are ubiquitous in physics, from the behaviour of electrons in metals and semiconductors to the propagation of electromagnetic waves in suspensions such as colloids, and quantum systems like cold atomic gases. A solid introduction to quantum mesoscopic physics, this book is a modern account of the problem of coherent wave propagation in random media. It provides a unified account of the basic theoretical tools and methods, highlighting the common aspects of the various optical and electronic phenomena involved and presenting a large number of experimental results. With over 200 figures, and exercises throughout, the book was originally published in 2007 and is ideal for graduate students in physics, electrical engineering, applied physics, acoustics and astrophysics. It will also be an interesting reference for researchers.

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems
Author :
Publisher : Cambridge University Press
Total Pages : 398
Release :
ISBN-10 : 9781139643016
ISBN-13 : 1139643010
Rating : 4/5 (16 Downloads)

Synopsis Electronic Transport in Mesoscopic Systems by : Supriyo Datta

Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Author :
Publisher : Oxford University Press
Total Pages : 458
Release :
ISBN-10 : 9780198566335
ISBN-13 : 0198566336
Rating : 4/5 (35 Downloads)

Synopsis Many-Body Quantum Theory in Condensed Matter Physics by : Henrik Bruus

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Quantum Engineering

Quantum Engineering
Author :
Publisher : Cambridge University Press
Total Pages : 345
Release :
ISBN-10 : 9781139495769
ISBN-13 : 1139495763
Rating : 4/5 (69 Downloads)

Synopsis Quantum Engineering by : A. M. Zagoskin

Quantum engineering – the design and fabrication of quantum coherent structures – has emerged as a field in physics with important potential applications. This book provides a self-contained presentation of the theoretical methods and experimental results in quantum engineering. The book covers topics such as the quantum theory of electric circuits, theoretical methods of quantum optics in application to solid state circuits, the quantum theory of noise, decoherence and measurements, Landauer formalism for quantum transport, the physics of weak superconductivity and the physics of two-dimensional electron gas in semiconductor heterostructures. The theory is complemented by up-to-date experimental data to help put it into context. Aimed at graduate students in physics, the book will enable readers to start their own research and apply the theoretical methods and results to their current experimental situation.

Controlling the Quantum World

Controlling the Quantum World
Author :
Publisher : National Academies Press
Total Pages : 245
Release :
ISBN-10 : 9780309102704
ISBN-13 : 0309102707
Rating : 4/5 (04 Downloads)

Synopsis Controlling the Quantum World by : National Research Council

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.

Condensed Matter Field Theory

Condensed Matter Field Theory
Author :
Publisher : Cambridge University Press
Total Pages : 785
Release :
ISBN-10 : 9780521769754
ISBN-13 : 0521769752
Rating : 4/5 (54 Downloads)

Synopsis Condensed Matter Field Theory by : Alexander Altland

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Feynman Diagram Techniques in Condensed Matter Physics

Feynman Diagram Techniques in Condensed Matter Physics
Author :
Publisher : Cambridge University Press
Total Pages : 415
Release :
ISBN-10 : 9781107025172
ISBN-13 : 1107025176
Rating : 4/5 (72 Downloads)

Synopsis Feynman Diagram Techniques in Condensed Matter Physics by : Radi A. Jishi

An introduction to the application of Feynman diagram techniques for researchers and advanced undergraduate students in condensed matter theory and many-body physics.

Wave Scattering in Complex Media: From Theory to Applications

Wave Scattering in Complex Media: From Theory to Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 637
Release :
ISBN-10 : 9789401002271
ISBN-13 : 9401002274
Rating : 4/5 (71 Downloads)

Synopsis Wave Scattering in Complex Media: From Theory to Applications by : Bart A. van Tiggelen

A collection of lectures on a variety of modern subjects in wave scattering, including fundamental issues in mesoscopic physics and radiative transfer, recent hot topics such as random lasers, liquid crystals, lefthanded materials and time-reversal, as well as modern applications in imaging and communication. There is a strong emphasis on the interdisciplinary aspects of wave propagation, including light and microwaves, acoustic and elastic waves, propagating in a variety of "complex" materials (liquid crystals, media with gain, natural media, magneto-optical media, photonic and phononic materials, etc.). It addresses many different items in contemporary research: mesoscopic fluctuations, localization, radiative transfer, symmetry aspects, and time-reversal. It also discusses new (potential) applications in telecommunication, soft matter and imaging.

Nano-Physics and Bio-Electronics

Nano-Physics and Bio-Electronics
Author :
Publisher : Elsevier
Total Pages : 363
Release :
ISBN-10 : 9780080537245
ISBN-13 : 0080537243
Rating : 4/5 (45 Downloads)

Synopsis Nano-Physics and Bio-Electronics by : T. Chakraborty

This book is a collection of some of the invited talks presented at the international meeting held at the Max Planck Institut fuer Physik Komplexer Systeme, Dresden, Germany during August 6-30, 2001, on the rapidly developing field of nanoscale science in science and bio-electronics Semiconductor physics has experienced unprecedented developments over the second half of the twentieth century. The exponential growth in microelectronic processing power and the size of dynamic memorie has been achieved by significant downscaling of the minimum feature size. Smaller feature sizes result in increased functional density, faster speed, and lower costs. In this process one is reaching the limits where quantum effects and fluctuations are beginning to play an important role. This book reflects the achievements of the present times and future directions of research on nanoscopic dimensions.

Atom-Photon Interactions

Atom-Photon Interactions
Author :
Publisher : John Wiley & Sons
Total Pages : 691
Release :
ISBN-10 : 9780471293361
ISBN-13 : 0471293369
Rating : 4/5 (61 Downloads)

Synopsis Atom-Photon Interactions by : Claude Cohen-Tannoudji

Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.