Mathematical Nonparametric Statistics

Mathematical Nonparametric Statistics
Author :
Publisher : CRC Press
Total Pages : 346
Release :
ISBN-10 : 2881240933
ISBN-13 : 9782881240935
Rating : 4/5 (33 Downloads)

Synopsis Mathematical Nonparametric Statistics by : Manoukian

First published in 1986. Primarily a reference text, Mathematical Nonparametric Statistics provides mathematicians and students with a systematic mathematical analysis and the fine points of nonparametrical statistical procedures and models used in practice. Divided into five sections and beginning with an extensive chapter on the fundamentals of mathematical statistical methods, its coverage of such topics as the Jackknife method, the Kolmogorov-Smirnov statistic, Box's method and the ch-squared test of fit is rigorous. Written for audiences with differing backgounds in mathematics, the book is of special use to those in the management sciences, industrial engineering, psychology and economics, as well as mathematics.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics
Author :
Publisher : CRC Press
Total Pages : 225
Release :
ISBN-10 : 9780429511363
ISBN-13 : 0429511361
Rating : 4/5 (63 Downloads)

Synopsis An Introduction to Nonparametric Statistics by : John E. Kolassa

An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

All of Nonparametric Statistics

All of Nonparametric Statistics
Author :
Publisher : Springer Science & Business Media
Total Pages : 272
Release :
ISBN-10 : 9780387306230
ISBN-13 : 0387306234
Rating : 4/5 (30 Downloads)

Synopsis All of Nonparametric Statistics by : Larry Wasserman

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

Mathematical Nonparametric Statistics

Mathematical Nonparametric Statistics
Author :
Publisher : Taylor & Francis
Total Pages : 343
Release :
ISBN-10 : 9781351433167
ISBN-13 : 1351433164
Rating : 4/5 (67 Downloads)

Synopsis Mathematical Nonparametric Statistics by : Edward B. Manoukian

First published in 1986. Primarily a reference text, Mathematical Nonparametric Statistics provides mathematicians and students with a systematic mathematical analysis and the fine points of nonparametrical statistical procedures and models used in practice. Divided into five sections and beginning with an extensive chapter on the fundamentals of mathematical statistical methods, its coverage of such topics as the Jackknife method, the Kolmogorov-Smirnov statistic, Box's method and the ch-squared test of fit is rigorous. Written for audiences with differing backgounds in mathematics, the book is of special use to those in the management sciences, industrial engineering, psychology and economics, as well as mathematics.

Nonparametric Statistics with Applications to Science and Engineering

Nonparametric Statistics with Applications to Science and Engineering
Author :
Publisher : John Wiley & Sons
Total Pages : 448
Release :
ISBN-10 : 0470168692
ISBN-13 : 9780470168691
Rating : 4/5 (92 Downloads)

Synopsis Nonparametric Statistics with Applications to Science and Engineering by : Paul H. Kvam

A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis
Author :
Publisher : CRC Press
Total Pages : 534
Release :
ISBN-10 : 9781439820513
ISBN-13 : 1439820511
Rating : 4/5 (13 Downloads)

Synopsis Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis by : Victor Patrangenaru

A New Way of Analyzing Object Data from a Nonparametric ViewpointNonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields

Methodology in Robust and Nonparametric Statistics

Methodology in Robust and Nonparametric Statistics
Author :
Publisher : CRC Press
Total Pages : 401
Release :
ISBN-10 : 9781439840696
ISBN-13 : 1439840695
Rating : 4/5 (96 Downloads)

Synopsis Methodology in Robust and Nonparametric Statistics by : Jana Jureckova

Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical sciences to the public health disciplines, and, more recently, in genomics, bioinformatics, and financial statistics. These disciplines are presently nourished by data mining and high-level computer-based algo

Nonparametric Statistical Methods

Nonparametric Statistical Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 872
Release :
ISBN-10 : 9781118553299
ISBN-13 : 1118553292
Rating : 4/5 (99 Downloads)

Synopsis Nonparametric Statistical Methods by : Myles Hollander

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R
Author :
Publisher : CRC Press
Total Pages : 283
Release :
ISBN-10 : 9781439873441
ISBN-13 : 1439873445
Rating : 4/5 (41 Downloads)

Synopsis Nonparametric Statistical Methods Using R by : John Kloke

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

Nonparametric Statistics

Nonparametric Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 288
Release :
ISBN-10 : 9781118840429
ISBN-13 : 1118840429
Rating : 4/5 (29 Downloads)

Synopsis Nonparametric Statistics by : Gregory W. Corder

“...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.