Mathematical Modeling in Renal Physiology

Mathematical Modeling in Renal Physiology
Author :
Publisher : Springer
Total Pages : 225
Release :
ISBN-10 : 9783642273674
ISBN-13 : 364227367X
Rating : 4/5 (74 Downloads)

Synopsis Mathematical Modeling in Renal Physiology by : Anita T. Layton

With the availability of high speed computers and advances in computational techniques, the application of mathematical modeling to biological systems is expanding. This comprehensive and richly illustrated volume provides up-to-date, wide-ranging material on the mathematical modeling of kidney physiology, including clinical data analysis and practice exercises. Basic concepts and modeling techniques introduced in this volume can be applied to other areas (or organs) of physiology. The models presented describe the main homeostatic functions performed by the kidney, including blood filtration, excretion of water and salt, maintenance of electrolyte balance and regulation of blood pressure. Each chapter includes an introduction to the basic relevant physiology, a derivation of the essential conservation equations and then a discussion of a series of mathematical models, with increasing level of complexity. This volume will be of interest to biological and mathematical scientists, as well as physiologists and nephrologists, who would like an introduction to mathematical techniques that can be applied to renal transport and function. The material is written for students who have had college-level calculus, but can be used in modeling courses in applied mathematics at all levels through early graduate courses.

Mathematical Modelling of Haemodialysis

Mathematical Modelling of Haemodialysis
Author :
Publisher : Springer
Total Pages : 166
Release :
ISBN-10 : 9783030214104
ISBN-13 : 3030214109
Rating : 4/5 (04 Downloads)

Synopsis Mathematical Modelling of Haemodialysis by : Leszek Pstras

Beginning with an introduction to kidney function, renal replacement therapies, and an overview of clinical problems associated with haemodialysis, this book explores the principles of the short-term baroreflex regulation of the cardiovascular system and the mechanisms of water and solute transport across the human body from a mathematical model perspective. It synthesizes theoretical physiological concepts and practical aspects of mathematical modelling needed for simulation and quantitative analysis of the haemodynamic response to dialysis therapy. Including an up-to-date review of the literature concerning the modelled physiological mechanisms and processes, the book serves both as an overview of transport and regulatory mechanisms related to the cardiovascular system and body fluids and as a useful reference for the study and development of mathematical models of dynamic physiological processes. Mathematical Modelling of Haemodialysis: Cardiovascular Response, Body Fluid Shifts, and Solute Kinetics is intended for researchers and graduate students in biomedical engineering, physiology, or medicine interested in mathematical modelling of cardiovascular dynamics and fluid and solute transport across the human body, both under physiological conditions and during haemodialysis therapy.

Applied Mathematical Models in Human Physiology

Applied Mathematical Models in Human Physiology
Author :
Publisher : SIAM
Total Pages : 311
Release :
ISBN-10 : 0898718287
ISBN-13 : 9780898718287
Rating : 4/5 (87 Downloads)

Synopsis Applied Mathematical Models in Human Physiology by : Johnny T. Ottesen

This book introduces mathematicians to real applications from physiology. Using mathematics to analyze physiological systems, the authors focus on models reflecting current research in cardiovascular and pulmonary physiology. In particular, they present models describing blood flow in the heart and the cardiovascular system, as well as the transport of oxygen and carbon dioxide through the respiratory system and a model for baroreceptor regulation.

Membrane Transport and Renal Physiology

Membrane Transport and Renal Physiology
Author :
Publisher : Springer Science & Business Media
Total Pages : 438
Release :
ISBN-10 : 0387954813
ISBN-13 : 9780387954813
Rating : 4/5 (13 Downloads)

Synopsis Membrane Transport and Renal Physiology by : Harold E. Layton

The papers in this volume arose out of the workshop Membrane Transport and Renal Physiology, which was conducted as part of the IMA 1998-1999 program year, Mathematics in Biology. The workshop brought together physiologists, biophysicists, and applied mathematicians who share a common interest in solute and water transport in biological systems, especially in the integrated function of the kidney. Solute and water transport through cells involves fluxes across two cell membranes, usually via specialized proteins that are integral membrane components. By means of mathematical representations, transport fluxes can be related to transmembrane solute concentrations and electrochemical driving forces. At the next level of functional integration, these representations can serve as key components for models of renal transcellular transport. Ultimately, simulations can be developed for transport-dependent aspects of overall renal function. Workshop topics included solute fluxes through ion channels, cotransporters, and metabolically-driven ion pumps; transport across fiber-matrix and capillary membranes; coordinated transport by renal epithelia; the urine concetrating mechanism; and intra-renal hemodynamic control. This volume will be of interest to biological and mathematical scientists who would like a view of recent mathematical efforts to represent membrane transport and its role in renal function.

Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities

Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities
Author :
Publisher : Academic Press
Total Pages : 260
Release :
ISBN-10 : 9780128195956
ISBN-13 : 0128195959
Rating : 4/5 (56 Downloads)

Synopsis Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities by : Rebecca Sanft

Exploring Mathematical Modeling in Biology through Case Studies and Experimental Activities provides supporting materials for courses taken by students majoring in mathematics, computer science or in the life sciences. The book's cases and lab exercises focus on hypothesis testing and model development in the context of real data. The supporting mathematical, coding and biological background permit readers to explore a problem, understand assumptions, and the meaning of their results. The experiential components provide hands-on learning both in the lab and on the computer. As a beginning text in modeling, readers will learn to value the approach and apply competencies in other settings. Included case studies focus on building a model to solve a particular biological problem from concept and translation into a mathematical form, to validating the parameters, testing the quality of the model and finally interpreting the outcome in biological terms. The book also shows how particular mathematical approaches are adapted to a variety of problems at multiple biological scales. Finally, the labs bring the biological problems and the practical issues of collecting data to actually test the model and/or adapting the mathematics to the data that can be collected.

Mathematical Physiology

Mathematical Physiology
Author :
Publisher : Springer Science & Business Media
Total Pages : 1067
Release :
ISBN-10 : 9780387758473
ISBN-13 : 038775847X
Rating : 4/5 (73 Downloads)

Synopsis Mathematical Physiology by : James Keener

Divided into two volumes, the book begins with a pedagogical presentation of some of the basic theory, with chapters on biochemical reactions, diffusion, excitability, wave propagation and cellular homeostasis. The second, more extensive part discusses particular physiological systems, with chapters on calcium dynamics, bursting oscillations and secretion, cardiac cells, muscles, intercellular communication, the circulatory system, the immune system, wound healing, the respiratory system, the visual system, hormone physiology, renal physiology, digestion, the visual system and hearing. New chapters on Calcium Dynamics, Neuroendocrine Cells and Regulation of Cell Function have been included. Reviews from first edition: Keener and Sneyd's Mathematical Physiology is the first comprehensive text of its kind that deals exclusively with the interplay between mathematics and physiology. Writing a book like this is an audacious act! -Society of Mathematical Biology Keener and Sneyd's is unique in that it attempts to present one of the most important subfields of biology and medicine, physiology, in terms of mathematical "language", rather than organizing materials around mathematical methodology. -SIAM review

Principles of Renal Physiology

Principles of Renal Physiology
Author :
Publisher : Springer Science & Business Media
Total Pages : 222
Release :
ISBN-10 : 0792361784
ISBN-13 : 9780792361787
Rating : 4/5 (84 Downloads)

Synopsis Principles of Renal Physiology by : Christopher J. Lote

The strengths of this popular text { its conciseness and logical progr ession through renal physiology and pathophysiology { are retained in the 4th edition. The text has been updated throughout, and the content has been expanded to make the book eminently suitable for 'systems-ba sed' courses.

Mathematics in Medicine and the Life Sciences

Mathematics in Medicine and the Life Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 257
Release :
ISBN-10 : 9781475741315
ISBN-13 : 1475741316
Rating : 4/5 (15 Downloads)

Synopsis Mathematics in Medicine and the Life Sciences by : Frank C. Hoppensteadt

The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.

The Princeton Companion to Applied Mathematics

The Princeton Companion to Applied Mathematics
Author :
Publisher : Princeton University Press
Total Pages : 1031
Release :
ISBN-10 : 9781400874477
ISBN-13 : 1400874475
Rating : 4/5 (77 Downloads)

Synopsis The Princeton Companion to Applied Mathematics by : Nicholas J. Higham

The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index