Luminescent Lanthanide Metal-organic Frameworks and Dendrimer Complexes for Optical Biological Imaging

Luminescent Lanthanide Metal-organic Frameworks and Dendrimer Complexes for Optical Biological Imaging
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : OCLC:1159401880
ISBN-13 :
Rating : 4/5 (80 Downloads)

Synopsis Luminescent Lanthanide Metal-organic Frameworks and Dendrimer Complexes for Optical Biological Imaging by : Alexandra Foucault-Collet

Unique properties of luminescent lanthanides reporters explain their emergence for bioanalytical and optical imaging applications. Lanthanide ions possess long emission lifetimes, a good resistance to photodecomposition and sharp emission bands that do not overlap. In addition, several lanthanides emit in the near infrared (NIR) region of the electromagnetic spectrum making them very interesting for in vivo imaging. Free lanthanide cations have low extinction coefficients due to the forbidden nature of the f → f transition. Therefore, lanthanides must be sensitized using a photonic converter such as an organic chromophore through the “antenna effect". We report here new near-infrared emitting compounds whose structure allows to incorporate a high density of lanthanide cations and sensitizers per unit volume: i) nano-MOF Yb-PVDC-3 based on Yb3+ sensitized by phenylenevinylene dicarboxylates. ii) polymetallic dendrimer complexes formed with derivatives of new generation-3 polyamidoamine dendrimers. In these complexes, 8 lanthanide ions (Eu3+, Yb3+, Nd3+) can be sensitized by the 32 antenna derived from 1,8-naphthalimide. These two families of compounds were fully characterised for their physical, photophysical properties as well as for their biological respective compatibilities. They are stable in various media and their low cytotoxicity and emission of a sufficient number of photons are suitable for near-infrared live cell imaging. One of the main goal outcomes of this work is the establishment of the proof of principle that nano- MOFs and lanthanide derived dendrimers can be used for the sensitization of NIR emitting lanthanides to create a new generation of NIR optical imaging agents suitable for both in cellulo and in vivoapplications.The present work also validates the efficiency of the strategy to use both types of nanoscale systems described here to increase the number of emitted photons per unit volume for an improved detection sensitivity and to compensate for low quantum yields.

Lanthanide Luminescence

Lanthanide Luminescence
Author :
Publisher : Springer Science & Business Media
Total Pages : 392
Release :
ISBN-10 : 9783642210235
ISBN-13 : 3642210236
Rating : 4/5 (35 Downloads)

Synopsis Lanthanide Luminescence by : Pekka Hänninen

Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
Author :
Publisher : John Wiley & Sons
Total Pages : 408
Release :
ISBN-10 : 9781119950837
ISBN-13 : 111995083X
Rating : 4/5 (37 Downloads)

Synopsis Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials by : Ana de Bettencourt-Dias

This comprehensive book presents the theoretical principles, current applications and latest research developments in the field of luminescent lanthanide complexes; a rapidly developing area of research which is attracting increasing interest amongst the scientific community. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials begins with an introduction to the basic theoretical and practical aspects of lanthanide ion luminescence, and the spectroscopic techniques used to evaluate the efficiency of luminescence. Subsequent chapters introduce a variety of different applications including: • Circularly polarized luminescence • Luminescence bioimaging with lanthanide complexes • Two-photon absorption of lanthanide complexes • Chemosensors • Upconversion luminescence • Excitation spectroscopy • Heterometallic complexes containing lanthanides Each chapter presents a detailed introduction to the application, followed by a description of experimental techniques specific to the area and an extensive review of recent literature. This book is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive resource covering the most relevant information in the field; a ‘one stop shop’ for all key references.

Modern Applications of Lanthanide Luminescence

Modern Applications of Lanthanide Luminescence
Author :
Publisher : Springer Nature
Total Pages : 285
Release :
ISBN-10 : 9783031128592
ISBN-13 : 3031128591
Rating : 4/5 (92 Downloads)

Synopsis Modern Applications of Lanthanide Luminescence by : Ana de Bettencourt-Dias

This volume builds upon the successful book Lanthanide Luminescence published in the Springer Series on Fluorescence in 2011. Since its publication, the field of lanthanide spectroscopy and the areas in which the light emission properties of the f-elements are used have experienced substantial advances. The luminescence properties of lanthanide ions make them unique candidates for a myriad of optical applications. This book highlights and reviews the latest research in areas ranging from luminescence thermometry to imaging, sensing and photonic applications of these fascinating elements. Each chapter provides a comprehensive introduction to a specific area of application of lanthanide luminescence and extensively reviews seminal papers and current research literature. Given its interdisciplinary scope, the book appeals to scientists and advanced students in physics, chemistry and materials science interested in compounds and materials with optical properties.

Assembled Lanthanide Complexes with Advanced Photophysical Properties

Assembled Lanthanide Complexes with Advanced Photophysical Properties
Author :
Publisher : Springer
Total Pages : 115
Release :
ISBN-10 : 9789811089329
ISBN-13 : 9811089329
Rating : 4/5 (29 Downloads)

Synopsis Assembled Lanthanide Complexes with Advanced Photophysical Properties by : Yuichi Hirai

This thesis provides essential information on the systematic design of assembled lanthanide complexes for functional luminescent materials. It discusses the relationships between assembled structures and photo, thermal, and mechanical properties on the basis of crystallography, spectroscopy, and thermodynamics. The described guidelines for assembled structures will be extremely valuable, both for industrial applications and for readers’ fundamental understanding of solid-state photophysics and materials chemistry. Luminescent lanthanide complexes are promising candidates for lighting devices, lasers, and bio-probes owing to their line-like and long-lived emission arising from characteristic 4f–4f transitions. Low-vibrational and asymmetrical coordination structures around lanthanide ions have been introduced to achieve strong luminescence, using specific organic ligands. Recently, assembled lanthanide complexes including coordination polymers and metal organic frameworks have increasingly attracted attention as a new class of luminescent materials offering thermal stability and color tunability. However, improving the luminescence efficiencies of these compounds remains a challenge, and specific molecular designs to control assembled structures and yield additional physical properties have not been established. The author provides a group of bent-angled bridging ligands to boost photoluminescence efficiency, and successfully introduces for the first time glass formability and strong triboluminescence properties.

Energy transfer process, luminescence optimizing and various applications of lanthanide complexes

Energy transfer process, luminescence optimizing and various applications of lanthanide complexes
Author :
Publisher : OAE Publishing Inc.
Total Pages : 21
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Energy transfer process, luminescence optimizing and various applications of lanthanide complexes by : Wei Fan

Modulating the spectroscopic overlap between the emission bands of donors and the absorption spectra of acceptors by various simulations, it is possible to systematically investigate the emission behaviors of lanthanide complexes under different conditions. To establish the relationships between emission behaviors and various external simulations, it is necessary to study the energy transfer rate and efficiency between the donor and acceptor under different conditions to clarify the luminescent mechanism of the complexes, providing a theoretical basis for high-performance smart materials. This review focuses on the recent progress of luminescence performance of lanthanide complexes, including energy transfer mechanisms, emission color modulation, the strategies for optimizing lanthanide luminescence, and finally, various applications based on luminescence performance of lanthanide complexes and lanthanide metal-organic frameworks.

Highly Luminescent Lanthanide Complexes with Specific Coordination Structures

Highly Luminescent Lanthanide Complexes with Specific Coordination Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 100
Release :
ISBN-10 : 9784431549444
ISBN-13 : 4431549447
Rating : 4/5 (44 Downloads)

Synopsis Highly Luminescent Lanthanide Complexes with Specific Coordination Structures by : Kohei Miyata

This thesis deals with strongly luminescent lanthanide complexes having novel coordination structures. Luminescent lanthanide complexes are promising candidates as active materials for EL devices, lasers, and bio-sensing applications. The organic ligands in lanthanide complexes control geometrical and vibrational frequency structures that are closely related to the luminescent properties. In most of the previous work, however, lanthanide complexes have high-vibrational frequency C–H units close to the metal center for radiationless transition. In this thesis, the luminescent properties of lanthanide complexes with low-vibrational frequency C–F and P=O units are elucidated in terms of geometrical, vibrational, and chemical structures. The author also describes lanthanide coordination polymers with both high thermal stability (decomposition point > 300°C) and strong-luminescent properties (emission quantum yield > 80%). The author believes that novel studies on the characteristic structures and photophysical properties of lanthanide complexes may open up a frontier field in photophysical, coordination and material chemistry.

Metal-Organic Frameworks for Photonics Applications

Metal-Organic Frameworks for Photonics Applications
Author :
Publisher : Springer
Total Pages : 196
Release :
ISBN-10 : 9783642449673
ISBN-13 : 3642449670
Rating : 4/5 (73 Downloads)

Synopsis Metal-Organic Frameworks for Photonics Applications by : Banglin Chen

The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.