Computability

Computability
Author :
Publisher :
Total Pages : 299
Release :
ISBN-10 : 049502886X
ISBN-13 : 9780495028864
Rating : 4/5 (6X Downloads)

Synopsis Computability by : Richard L. Epstein

Computability, Complexity, Logic

Computability, Complexity, Logic
Author :
Publisher : Elsevier
Total Pages : 618
Release :
ISBN-10 : 9780080887043
ISBN-13 : 008088704X
Rating : 4/5 (43 Downloads)

Synopsis Computability, Complexity, Logic by : E. Börger

The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems.The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes and classical aspects of these areas, the subject matter has been selected to give priority throughout to the new aspects of traditional questions, results and methods which have developed from the needs or knowledge of computer science and particularly of complexity theory.It is both a textbook for introductory courses in the above-mentioned disciplines as well as a monograph in which further results of new research are systematically presented and where an attempt is made to make explicit the connections and analogies between a variety of concepts and constructions.

Foundations of Logic and Theory of Computation

Foundations of Logic and Theory of Computation
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1904987885
ISBN-13 : 9781904987888
Rating : 4/5 (85 Downloads)

Synopsis Foundations of Logic and Theory of Computation by : A. Sernadas

The book provides a self-contained introduction to mathematical logic and computability theory for students of mathematics or computer science. It is organized around the failures and successes of Hilbert's programme for the formalization of Mathematics. It is widely known that the programme failed with Gödel's incompleteness theorems and related negative results about arithmetic. Unfortunately, the positive outcomes of the programme are less well known, even among mathematicians. The book covers key successes, like Gödel's proof of the completeness of first-order logic, Gentzen's proof of its consistency by purely symbolic means, and the decidability of a couple of useful theories. The book also tries to convey the message that Hilbert's programme made a significant contribution to the advent of the computer as it is nowadays understood and, thus, to the latest industrial revolution. Part I of the book addresses Hilbert's programme and computability. Part II presents first-order logic, including Gödel's completeness theorem and Gentzen's consistency theorem. Part III is focused on arithmetic, representability of computable maps, Gödel's incompleteness theorems and decidability of Presburger arithmetic. Part IV provides detailed answers to selected exercises. The book can be used at late undergraduate level or early graduate level. An undergraduate course would concentrate on Parts I and II, leaving out the Gentzen calculus, and sketching the way to the 1st incompleteness theorem. A more advanced course might skip early material already known to the students and concentrate on the positive and negative results of Hilbert's programme, thus covering Gentzen's proof of consistency and Part III in full.

The Foundations of Computability Theory

The Foundations of Computability Theory
Author :
Publisher : Springer
Total Pages : 341
Release :
ISBN-10 : 9783662448083
ISBN-13 : 3662448084
Rating : 4/5 (83 Downloads)

Synopsis The Foundations of Computability Theory by : Borut Robič

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Handbook of Computability Theory

Handbook of Computability Theory
Author :
Publisher : Elsevier
Total Pages : 741
Release :
ISBN-10 : 9780080533049
ISBN-13 : 0080533043
Rating : 4/5 (49 Downloads)

Synopsis Handbook of Computability Theory by : E.R. Griffor

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

Martin Davis on Computability, Computational Logic, and Mathematical Foundations

Martin Davis on Computability, Computational Logic, and Mathematical Foundations
Author :
Publisher : Springer
Total Pages : 454
Release :
ISBN-10 : 9783319418421
ISBN-13 : 3319418424
Rating : 4/5 (21 Downloads)

Synopsis Martin Davis on Computability, Computational Logic, and Mathematical Foundations by : Eugenio G. Omodeo

This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.

Logical Foundations of Mathematics and Computational Complexity

Logical Foundations of Mathematics and Computational Complexity
Author :
Publisher : Springer Science & Business Media
Total Pages : 699
Release :
ISBN-10 : 9783319001197
ISBN-13 : 3319001191
Rating : 4/5 (97 Downloads)

Synopsis Logical Foundations of Mathematics and Computational Complexity by : Pavel Pudlák

The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.

Logic, Foundations of Mathematics, and Computability Theory

Logic, Foundations of Mathematics, and Computability Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 401
Release :
ISBN-10 : 9789401011389
ISBN-13 : 9401011389
Rating : 4/5 (89 Downloads)

Synopsis Logic, Foundations of Mathematics, and Computability Theory by : Robert E. Butts

The Fifth International Congress of Logic, Methodology and Philosophy of Science was held at the University of Western Ontario, London, Canada, 27 August to 2 September 1975. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science, and was sponsored by the National Research Council of Canada and the University of Western Ontario. As those associated closely with the work of the Division over the years know well, the work undertaken by its members varies greatly and spans a number of fields not always obviously related. In addition, the volume of work done by first rate scholars and scientists in the various fields of the Division has risen enormously. For these and related reasons it seemed to the editors chosen by the Divisional officers that the usual format of publishing the proceedings of the Congress be abandoned in favour of a somewhat more flexible, and hopefully acceptable, method of pre sentation. Accordingly, the work of the invited participants to the Congress has been divided into four volumes appearing in the University of Western Ontario Series in Philosophy of Science. The volumes are entitled, Logic, Foundations of Mathematics and Computability Theory, Foun dational Problems in the Special Sciences, Basic Problems in Methodol ogy and Linguistics, and Historical and Philosophical Dimensions of Logic, Methodology and Philosophy of Science.

Foundations of Computation

Foundations of Computation
Author :
Publisher :
Total Pages : 256
Release :
ISBN-10 : OCLC:1000322544
ISBN-13 :
Rating : 4/5 (44 Downloads)

Synopsis Foundations of Computation by : Carol Critchlow

Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science.

Turing Computability

Turing Computability
Author :
Publisher : Springer
Total Pages : 289
Release :
ISBN-10 : 9783642319334
ISBN-13 : 3642319335
Rating : 4/5 (34 Downloads)

Synopsis Turing Computability by : Robert I. Soare

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.