Learning Networks

Learning Networks
Author :
Publisher : MIT Press
Total Pages : 366
Release :
ISBN-10 : 0262082365
ISBN-13 : 9780262082365
Rating : 4/5 (65 Downloads)

Synopsis Learning Networks by : Linda Marie Harasim

The field; Learning networks: an introduction; Networks for schools: exemplars and experiences; Networks for higher education, training, and informal learning: exemplares and experiences; The guide; Designs for learning networks; Getting started: the implementation process; Teaching online; Learning online; Problems in paradise: expect the best, prepare for the worst; The future; New directions; Network learning: a paradign for the twenty-first century; Epilogue: email from the future; Appendixes; Indice.

Learning Bayesian Networks

Learning Bayesian Networks
Author :
Publisher : Prentice Hall
Total Pages : 704
Release :
ISBN-10 : STANFORD:36105111872318
ISBN-13 :
Rating : 4/5 (18 Downloads)

Synopsis Learning Bayesian Networks by : Richard E. Neapolitan

In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.

Learning Together Online

Learning Together Online
Author :
Publisher : Routledge
Total Pages : 321
Release :
ISBN-10 : 9781135615390
ISBN-13 : 113561539X
Rating : 4/5 (90 Downloads)

Synopsis Learning Together Online by : Starr Roxanne Hiltz

This book addresses the past and future of research on the effectiveness of "asynchronous learning networks" courses in which students and teachers learn together online via the Internet. An integrated theoretical framework called "Online Interaction Lea

Networks for Learning

Networks for Learning
Author :
Publisher : Routledge
Total Pages : 286
Release :
ISBN-10 : 9781351996976
ISBN-13 : 1351996975
Rating : 4/5 (76 Downloads)

Synopsis Networks for Learning by : Chris Brown

Educational researchers, policy-makers and practitioners are increasingly focusing their attention on Professional Learning Networks in order to facilitate teacher development and encourage school and school system improvement. However, despite the understanding that PLNs can contribute significantly to improving teaching practice and student achievement, there are key challenges regarding their use. These challenges include: ensuring PLNs can provide opportunities for generating and sharing knowledge within schools enabling teachers and professionals to direct their own development helping individuals change their practices through inquiry-led approaches facilitating partnerships which work across a variety of stakeholders In this new edited volume, Brown and Poortman evaluate these challenges from both a theoretical and practical approach. A multitude of perspectives from a team of international contributors covers: the importance of Professional Learning Networks the use of evidence within PLNs the impact of inter-school networks international cases of networks and communities the promotion and sustainability of PLNs Also featuring case studies and exemplars to contextualise sustainable learning networks, Networks For Learning is an accessible and thoroughly-researched book, which will be essential reading and a valuable resource for researchers, teachers and school leaders who are interested in developing professional learning networks.

Deep Learning

Deep Learning
Author :
Publisher : MIT Press
Total Pages : 801
Release :
ISBN-10 : 9780262337373
ISBN-13 : 0262337371
Rating : 4/5 (73 Downloads)

Synopsis Deep Learning by : Ian Goodfellow

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Teaching Machines

Teaching Machines
Author :
Publisher : MIT Press
Total Pages : 325
Release :
ISBN-10 : 9780262546065
ISBN-13 : 026254606X
Rating : 4/5 (65 Downloads)

Synopsis Teaching Machines by : Audrey Watters

How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.

Neural Networks and Deep Learning

Neural Networks and Deep Learning
Author :
Publisher : Springer
Total Pages : 512
Release :
ISBN-10 : 9783319944630
ISBN-13 : 3319944630
Rating : 4/5 (30 Downloads)

Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Learning and Soft Computing

Learning and Soft Computing
Author :
Publisher : MIT Press
Total Pages : 556
Release :
ISBN-10 : 0262112558
ISBN-13 : 9780262112550
Rating : 4/5 (58 Downloads)

Synopsis Learning and Soft Computing by : Vojislav Kecman

This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.

The Architecture of Productive Learning Networks

The Architecture of Productive Learning Networks
Author :
Publisher : Routledge
Total Pages : 313
Release :
ISBN-10 : 9781135070182
ISBN-13 : 1135070180
Rating : 4/5 (82 Downloads)

Synopsis The Architecture of Productive Learning Networks by : Lucila Carvalho

The Architecture of Productive Learning Networks explores the characteristics of productive networked learning situations and, through a series of case studies, identifies some of the key qualities of successful designs. The case studies include networks from a variety of disciplinary and professional fields, including graphic design, chemistry, health care, library science, and teacher education. These learning networks have been implemented in a variety of settings: undergraduate courses in higher education, continuing professional development, and informal networks for creating and sharing knowledge on a particular topic. They are rich in reusable design ideas. The book introduces a framework for analyzing learning networks to show how knowledge, human interaction and physical and digital resources combine in the operation of productive learning networks. The book also argues that learning through interaction in networks has a long history. It combines ideas from architecture, anthropology, archaeology, education, sociology and organizational theory to illustrate and understand networked forms of learning.

Author :
Publisher : Solution Tree Press
Total Pages : 270
Release :
ISBN-10 : 9781935543299
ISBN-13 : 1935543296
Rating : 4/5 (99 Downloads)

Synopsis by : Will Richardson

The Internet connects us in unprecedented ways. To prepare students to flourish in this new learning world, schools will need to transform themselves in important ways. This book is a road map for any educator thinking about using the web for learning. Build your own learning network, and use learning networks in the classroom and schoolwide to improve student outcomes.