Laser Beam Propagation Through Random Media

Laser Beam Propagation Through Random Media
Author :
Publisher : SPIE-International Society for Optical Engineering
Total Pages : 506
Release :
ISBN-10 : CORNELL:31924083800932
ISBN-13 :
Rating : 4/5 (32 Downloads)

Synopsis Laser Beam Propagation Through Random Media by : Larry C. Andrews

Very Good,No Highlights or Markup,all pages are intact.

Laser Beam Propagation Through Random Media

Laser Beam Propagation Through Random Media
Author :
Publisher : SPIE-International Society for Optical Engineering
Total Pages : 820
Release :
ISBN-10 : UOM:39015062444826
ISBN-13 :
Rating : 4/5 (26 Downloads)

Synopsis Laser Beam Propagation Through Random Media by : Larry C. Andrews

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.

Laser Beam Scintillation with Applications

Laser Beam Scintillation with Applications
Author :
Publisher : SPIE Press
Total Pages : 408
Release :
ISBN-10 : 0819441031
ISBN-13 : 9780819441034
Rating : 4/5 (31 Downloads)

Synopsis Laser Beam Scintillation with Applications by : Larry C. Andrews

Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

Random Light Beams

Random Light Beams
Author :
Publisher : CRC Press
Total Pages : 366
Release :
ISBN-10 : 9781439819517
ISBN-13 : 1439819513
Rating : 4/5 (17 Downloads)

Synopsis Random Light Beams by : Olga Korotkova

Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.

Field Guide to Atmospheric Optics

Field Guide to Atmospheric Optics
Author :
Publisher : Society of Photo Optical
Total Pages : 96
Release :
ISBN-10 : 0819453188
ISBN-13 : 9780819453181
Rating : 4/5 (88 Downloads)

Synopsis Field Guide to Atmospheric Optics by : Larry C. Andrews

The material in this Field Guide is a condensed version of similar material found in two textbooks: Laser Beam Propagation through Random Media (SPIE Vol. PM53) and Laser Beam Scintillation with Applications (SPIE Vol. PM99). Topics chosen for this concise presentation include a review of classical Kolmogorov turbulence theory, Gaussian-beam waves in free space, and atmospheric effects on a propagating optical wave. These atmospheric effects have great importance in a variety of applications like imaging, free space optical communications, laser radar, and remote sensing. This Guide presents tractable mathematical models from which the practitioner can readily determine beam spreading, beam wander, spatial coherence radius (Fried's parameter), angle of arrival fluctuations, scintillation, aperture averaging effects, fade probabilities, bit error-rates, and enhanced backscatter effects, among others.

A Guided Tour of Light Beams

A Guided Tour of Light Beams
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 105
Release :
ISBN-10 : 9781681744377
ISBN-13 : 1681744376
Rating : 4/5 (77 Downloads)

Synopsis A Guided Tour of Light Beams by : David S Simon

From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.

Beam Propagation Method for Design of Optical Waveguide Devices

Beam Propagation Method for Design of Optical Waveguide Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 401
Release :
ISBN-10 : 9781119083375
ISBN-13 : 1119083370
Rating : 4/5 (75 Downloads)

Synopsis Beam Propagation Method for Design of Optical Waveguide Devices by : Ginés Lifante Pedrola

The basic of the BPM technique in the frequency domain relies on treating the slowly varying envelope of the monochromatic electromagnetic field under paraxial propagation, thus allowing efficient numerical computation in terms of speed and allocated memory. In addition, the BPM based on finite differences is an easy way to implement robust and efficient computer codes. This book presents several approaches for treating the light: wide-angle, scalar approach, semivectorial treatment, and full vectorial treatment of the electromagnetic fields. Also, special topics in BPM cover the simulation of light propagation in anisotropic media, non-linear materials, electro-optic materials, and media with gain/losses, and describe how BPM can deal with strong index discontinuities or waveguide gratings, by introducing the bidirectional-BPM. BPM in the time domain is also described, and the book includes the powerful technique of finite difference time domain method, which fills the gap when the standard BPM is no longer applicable. Once the description of these numerical techniques have been detailed, the last chapter includes examples of passive, active and functional integrated photonic devices, such as waveguide reflectors, demultiplexers, polarization converters, electro-optic modulators, lasers or frequency converters. The book will help readers to understand several BPM approaches, to build their own codes, or to properly use the existing commercial software based on these numerical techniques.

Orbital Angular Momentum States of Light

Orbital Angular Momentum States of Light
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 0750322802
ISBN-13 : 9780750322805
Rating : 4/5 (02 Downloads)

Synopsis Orbital Angular Momentum States of Light by : Kedar Khare

Orbital Angular Momentum States of Light provides an in-depth introduction to modelling of long-range propagation of orbital angular momentum (OAM) modes as well as more general structured light beams through atmospheric turbulence. Starting with angular spectrum method for diffraction and description of structured light states, the book discusses the technical details related to wave propagation through atmospheric turbulence. The review of historical as well as more recent ideas in this topical area, along with computer simulation codes, makes this book a useful reference to researchers and optical engineers interested in developing and testing of free-space applications of OAM states of light. Part of IOP Series in Advances in Optics, Photonics and Optoelectronics.

Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media
Author :
Publisher : John Wiley & Sons
Total Pages : 608
Release :
ISBN-10 : 078034717X
ISBN-13 : 9780780347175
Rating : 4/5 (7X Downloads)

Synopsis Wave Propagation and Scattering in Random Media by : Akira Ishimaru

Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: Wave characteristics in aerosols and hydrometeors Optical and acoustic scattering in sea water Scattering from biological materials Pulse scattering and beam wave propagation in such media Optical diffusion in tissues and blood Transport and radiative transfer theory Kubelka—Munk flux theory and plane-parallel problem Multiple scattering theory Wave fluctuations in turbulence Strong fluctuation theory Rough surface scattering Remote sensing and inversion techniques Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.