Knowledge Representation And The Semantics Of Natural Language
Download Knowledge Representation And The Semantics Of Natural Language full books in PDF, epub, and Kindle. Read online free Knowledge Representation And The Semantics Of Natural Language ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hermann Helbig |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 652 |
Release |
: 2005-12-19 |
ISBN-10 |
: 9783540299660 |
ISBN-13 |
: 3540299661 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Knowledge Representation and the Semantics of Natural Language by : Hermann Helbig
Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the pres- vation of cultural achievements and their transmission from one generation to the other. During the last few decades, the ?ood of digitalized information has been growing tremendously. This tendency will continue with the globali- tion of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical und- standing and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this c- text, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the g- eration of natural language expressions from formal representations. This book presents a method for the semantic representation of natural l- guage expressions (texts, sentences, phrases, etc. ) which can be used as a u- versal knowledge representation paradigm in the human sciences, like lingu- tics, cognitive psychology, or philosophy of language, as well as in com- tational linguistics and in arti?cial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
Author |
: Łucja M. Iwańska |
Publisher |
: AAAI Press |
Total Pages |
: 490 |
Release |
: 2000-06-19 |
ISBN-10 |
: UOM:39015047725570 |
ISBN-13 |
: |
Rating |
: 4/5 (70 Downloads) |
Synopsis Natural Language Processing and Knowledge Representation by : Łucja M. Iwańska
"Traditionally, knowledge representation and reasoning systems have incorporated natural language as interfaces to expert systems or knowledge bases that performed tasks separate from natural language processing. As this book shows, however, the computational nature of representation and inference in natural language makes it the ideal model for all tasks in an intelligent computer system. Natural language processing combines the qualitative characteristics of human knowledge processing with a computer's quantitative advantages, allowing for in-depth, systematic processing of vast amounts of information.
Author |
: Michael Gelfond |
Publisher |
: Cambridge University Press |
Total Pages |
: 363 |
Release |
: 2014-03-10 |
ISBN-10 |
: 9781107782877 |
ISBN-13 |
: 1107782872 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Knowledge Representation, Reasoning, and the Design of Intelligent Agents by : Michael Gelfond
Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.
Author |
: Michael Levison |
Publisher |
: A&C Black |
Total Pages |
: 304 |
Release |
: 2012-12-20 |
ISBN-10 |
: 9781441190734 |
ISBN-13 |
: 1441190732 |
Rating |
: 4/5 (34 Downloads) |
Synopsis The Semantic Representation of Natural Language by : Michael Levison
This volume contains a detailed, precise and clear semantic formalism designed to allow non-programmers such as linguists and literary specialists to represent elements of meaning which they must deal with in their research and teaching. At the same time, by its basis in a functional programming paradigm, it retains sufficient formal precision to support computational implementation. The formalism is designed to represent meaning as found at a variety of levels, including basic semantic units and relations, word meaning, sentence-level phenomena, and text-level meaning. By drawing on fundamental principles of program design, the proposed formalism is both easy to read and modify yet sufficiently powerful to allow for the representation of complex semantic phenomena. In this monograph, the authors introduce the formalism and show its basic structure, apply it to the analysis of the semantics of a variety of linguistic phenomena in both English and French, and use it to represent the semantics of a variety of texts ranging from single sentences, to textual excepts, to a full story.
Author |
: Zhiyuan Liu |
Publisher |
: Springer Nature |
Total Pages |
: 319 |
Release |
: 2020-07-03 |
ISBN-10 |
: 9789811555732 |
ISBN-13 |
: 9811555737 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Representation Learning for Natural Language Processing by : Zhiyuan Liu
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Author |
: E. Cornell Way |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 302 |
Release |
: 2013-03-14 |
ISBN-10 |
: 9789401579414 |
ISBN-13 |
: 9401579415 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Knowledge Representation and Metaphor by : E. Cornell Way
This series will include monographs and collections of studies devoted to the investigation and exploration of knowledge, information, and data processing systems of all kinds, no matter whether human, (other) animal, or machine. Its scope is intended to span the full range of interests from classical problems in the philosophy of mind and philosophical psychol ogy through issues in cognitive psychology and sociobiology (concerning the mental capabilities of other species) to ideas related to artificial intelligence and computer science. While primary emphasis will be placed upon theoretical, conceptual, and epistemological aspects of these problems and domains, empirical, experimental, and methodological studies will also appear from time to time. The problems posed by metaphor and analogy are among the most challenging that confront the field of knowledge representation. In this study, Eileen Way has drawn upon the combined resources of philosophy, psychology, and computer science in developing a systematic and illuminating theoretical framework for understanding metaphors and analogies. While her work provides solutions to difficult problems of knowledge representation, it goes much further by investigating some of the most important philosophical assumptions that prevail within artificial intelligence today. By exposing the limitations inherent in the assumption that languages are both literal and truth-functional, she has advanced our grasp of the nature of language itself. J.R.F.
Author |
: Manfred Stede |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 230 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461551799 |
ISBN-13 |
: 146155179X |
Rating |
: 4/5 (99 Downloads) |
Synopsis Lexical Semantics and Knowledge Representation in Multilingual Text Generation by : Manfred Stede
In knowledge-based natural language generation, issues of formal knowledge representation meet with the linguistic problems of choosing the most appropriate verbalization in a particular situation of utterance. Lexical Semantics and Knowledge Representation in Multilingual Text Generation presents a new approach to systematically linking the realms of lexical semantics and knowledge represented in a description logic. For language generation from such abstract representations, lexicalization is taken as the central step: when choosing words that cover the various parts of the content representation, the principal decisions on conveying the intended meaning are made. A preference mechanism is used to construct the utterance that is best tailored to parameters representing the context. Lexical Semantics and Knowledge Representation in Multilingual Text Generation develops the means for systematically deriving a set of paraphrases from the same underlying representation with the emphasis on events and verb meaning. Furthermore, the same mapping mechanism is used to achieve multilingual generation: English and German output are produced in parallel, on the basis of an adequate division between language-neutral and language-specific (lexical and grammatical) knowledge. Lexical Semantics and Knowledge Representation in Multilingual Text Generation provides detailed insights into designing the representations and organizing the generation process. Readers with a background in artificial intelligence, cognitive science, knowledge representation, linguistics, or natural language processing will find a model of language production that can be adapted to a variety of purposes.
Author |
: John F. Sowa |
Publisher |
: |
Total Pages |
: 594 |
Release |
: 2000 |
ISBN-10 |
: 711112149X |
ISBN-13 |
: 9787111121497 |
Rating |
: 4/5 (9X Downloads) |
Synopsis Knowledge Representation by : John F. Sowa
Author |
: Frank van Harmelen |
Publisher |
: Elsevier |
Total Pages |
: 1035 |
Release |
: 2008-01-08 |
ISBN-10 |
: 9780080557021 |
ISBN-13 |
: 0080557023 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Handbook of Knowledge Representation by : Frank van Harmelen
Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily
Author |
: Mohammad Taher Pilehvar |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 177 |
Release |
: 2020-11-13 |
ISBN-10 |
: 9781636390222 |
ISBN-13 |
: 1636390226 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Embeddings in Natural Language Processing by : Mohammad Taher Pilehvar
Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.