Key Technologies for Data Management

Key Technologies for Data Management
Author :
Publisher : Springer Science & Business Media
Total Pages : 277
Release :
ISBN-10 : 9783540223825
ISBN-13 : 3540223827
Rating : 4/5 (25 Downloads)

Synopsis Key Technologies for Data Management by : Howard Williams

This book constitutes the refereed proceedings of the 21st British National Conference on Databases, BNCOD 2004, held in Edinburgh, Scotland, UK in July 2004. The 21 revised full papers presented together with an invited paper and the abstract of an invited talk were carefully reviewed and selected from more than 70 submissions. The papers are organized in topical sections on data streams, integration and heterogeneity, data analytics and manipulation, XML, interfaces and visualization, spatial data, and TLAD workshop papers.

Managing Data in Motion

Managing Data in Motion
Author :
Publisher : Newnes
Total Pages : 203
Release :
ISBN-10 : 9780123977915
ISBN-13 : 0123977916
Rating : 4/5 (15 Downloads)

Synopsis Managing Data in Motion by : April Reeve

Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"

Advanced Data Management

Advanced Data Management
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 468
Release :
ISBN-10 : 9783110433074
ISBN-13 : 3110433079
Rating : 4/5 (74 Downloads)

Synopsis Advanced Data Management by : Lena Wiese

Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.

Data Management: a gentle introduction

Data Management: a gentle introduction
Author :
Publisher : Van Haren
Total Pages : 355
Release :
ISBN-10 : 9789401805551
ISBN-13 : 9401805555
Rating : 4/5 (51 Downloads)

Synopsis Data Management: a gentle introduction by : Bas van Gils

The overall objective of this book is to show that data management is an exciting and valuable capability that is worth time and effort. More specifically it aims to achieve the following goals: 1. To give a “gentle” introduction to the field of DM by explaining and illustrating its core concepts, based on a mix of theory, practical frameworks such as TOGAF, ArchiMate, and DMBOK, as well as results from real-world assignments. 2. To offer guidance on how to build an effective DM capability in an organization.This is illustrated by various use cases, linked to the previously mentioned theoretical exploration as well as the stories of practitioners in the field. The primary target groups are: busy professionals who “are actively involved with managing data”. The book is also aimed at (Bachelor’s/ Master’s) students with an interest in data management. The book is industry-agnostic and should be applicable in different industries such as government, finance, telecommunications etc. Typical roles for which this book is intended: data governance office/ council, data owners, data stewards, people involved with data governance (data governance board), enterprise architects, data architects, process managers, business analysts and IT analysts. The book is divided into three main parts: theory, practice, and closing remarks. Furthermore, the chapters are as short and to the point as possible and also make a clear distinction between the main text and the examples. If the reader is already familiar with the topic of a chapter, he/she can easily skip it and move on to the next.

Big Data

Big Data
Author :
Publisher : Springer
Total Pages : 100
Release :
ISBN-10 : 9783319062457
ISBN-13 : 331906245X
Rating : 4/5 (57 Downloads)

Synopsis Big Data by : Min Chen

This Springer Brief provides a comprehensive overview of the background and recent developments of big data. The value chain of big data is divided into four phases: data generation, data acquisition, data storage and data analysis. For each phase, the book introduces the general background, discusses technical challenges and reviews the latest advances. Technologies under discussion include cloud computing, Internet of Things, data centers, Hadoop and more. The authors also explore several representative applications of big data such as enterprise management, online social networks, healthcare and medical applications, collective intelligence and smart grids. This book concludes with a thoughtful discussion of possible research directions and development trends in the field. Big Data: Related Technologies, Challenges and Future Prospects is a concise yet thorough examination of this exciting area. It is designed for researchers and professionals interested in big data or related research. Advanced-level students in computer science and electrical engineering will also find this book useful.

Enterprise Master Data Management

Enterprise Master Data Management
Author :
Publisher : Pearson Education
Total Pages : 833
Release :
ISBN-10 : 9780132704274
ISBN-13 : 0132704277
Rating : 4/5 (74 Downloads)

Synopsis Enterprise Master Data Management by : Allen Dreibelbis

The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration

Smart Grid Technology

Smart Grid Technology
Author :
Publisher : Cambridge University Press
Total Pages : 277
Release :
ISBN-10 : 9781108475204
ISBN-13 : 1108475205
Rating : 4/5 (04 Downloads)

Synopsis Smart Grid Technology by : Sudip Misra

Discusses concepts of smart grid technologies, from the perspective of integration with cloud computing and data management approaches.

Principles of Database Management

Principles of Database Management
Author :
Publisher : Cambridge University Press
Total Pages : 817
Release :
ISBN-10 : 9781107186125
ISBN-13 : 1107186129
Rating : 4/5 (25 Downloads)

Synopsis Principles of Database Management by : Wilfried Lemahieu

Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.

Effective Big Data Management and Opportunities for Implementation

Effective Big Data Management and Opportunities for Implementation
Author :
Publisher : IGI Global
Total Pages : 345
Release :
ISBN-10 : 9781522501831
ISBN-13 : 1522501835
Rating : 4/5 (31 Downloads)

Synopsis Effective Big Data Management and Opportunities for Implementation by : Singh, Manoj Kumar

“Big data” has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. Effective Big Data Management and Opportunities for Implementation explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.

DAMA-DMBOK

DAMA-DMBOK
Author :
Publisher :
Total Pages : 628
Release :
ISBN-10 : 1634622340
ISBN-13 : 9781634622349
Rating : 4/5 (40 Downloads)

Synopsis DAMA-DMBOK by : Dama International

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.