Iterative Learning Control
Download Iterative Learning Control full books in PDF, epub, and Kindle. Read online free Iterative Learning Control ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David H. Owens |
Publisher |
: Springer |
Total Pages |
: 473 |
Release |
: 2015-10-31 |
ISBN-10 |
: 9781447167723 |
ISBN-13 |
: 1447167724 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Iterative Learning Control by : David H. Owens
This book develops a coherent and quite general theoretical approach to algorithm design for iterative learning control based on the use of operator representations and quadratic optimization concepts including the related ideas of inverse model control and gradient-based design. Using detailed examples taken from linear, discrete and continuous-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately as their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates the underlying robustness of the paradigm and also includes new control laws that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference and auxiliary signals and also to support new properties such as spectral annihilation. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes.
Author |
: Jian-Xin Xu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 204 |
Release |
: 2008-12-12 |
ISBN-10 |
: 9781848821750 |
ISBN-13 |
: 1848821751 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Real-time Iterative Learning Control by : Jian-Xin Xu
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Author |
: Zeungnam Bien |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 384 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461556299 |
ISBN-13 |
: 1461556295 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Iterative Learning Control by : Zeungnam Bien
Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.
Author |
: Yangquan Chen |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2007-10-03 |
ISBN-10 |
: 9781846285394 |
ISBN-13 |
: 1846285399 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Iterative Learning Control by : Yangquan Chen
This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.
Author |
: Hyo-Sung Ahn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 237 |
Release |
: 2007-06-28 |
ISBN-10 |
: 9781846288593 |
ISBN-13 |
: 1846288592 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Iterative Learning Control by : Hyo-Sung Ahn
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
Author |
: Kevin L. Moore |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 158 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781447119128 |
ISBN-13 |
: 1447119126 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Iterative Learning Control for Deterministic Systems by : Kevin L. Moore
The material presented in this book addresses the analysis and design of learning control systems. It begins with an introduction to the concept of learning control, including a comprehensive literature review. The text follows with a complete and unifying analysis of the learning control problem for linear LTI systems using a system-theoretic approach which offers insight into the nature of the solution of the learning control problem. Additionally, several design methods are given for LTI learning control, incorporating a technique based on parameter estimation and a one-step learning control algorithm for finite-horizon problems. Further chapters focus upon learning control for deterministic nonlinear systems, and a time-varying learning controller is presented which can be applied to a class of nonlinear systems, including the models of typical robotic manipulators. The book concludes with the application of artificial neural networks to the learning control problem. Three specific ways to neural nets for this purpose are discussed, including two methods which use backpropagation training and reinforcement learning. The appendices in the book are particularly useful because they serve as a tutorial on artificial neural networks.
Author |
: Jian-Xin Xu |
Publisher |
: Springer |
Total Pages |
: 177 |
Release |
: 2003-09-04 |
ISBN-10 |
: 9783540448457 |
ISBN-13 |
: 3540448454 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Linear and Nonlinear Iterative Learning Control by : Jian-Xin Xu
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Author |
: Krzysztof Patan |
Publisher |
: Springer |
Total Pages |
: 231 |
Release |
: 2019-03-16 |
ISBN-10 |
: 9783030118693 |
ISBN-13 |
: 303011869X |
Rating |
: 4/5 (93 Downloads) |
Synopsis Robust and Fault-Tolerant Control by : Krzysztof Patan
Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.
Author |
: Kurt Bittner |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 670 |
Release |
: 2006-06-27 |
ISBN-10 |
: 9780132702560 |
ISBN-13 |
: 0132702568 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Managing Iterative Software Development Projects by : Kurt Bittner
The Practical, Start-to-Finish Guide to Planning and Leading Iterative Software Projects Iterative processes have gained widespread acceptance because they help software developers reduce risk and cost, manage change, improve productivity, and deliver more effective, timely solutions. But conventional project management techniques don’t work well in iterative projects, and newer iterative management techniques have been poorly documented. Managing Iterative Software Development Projects is the solution: a relentlessly practical guide to planning, organizing, estimating, staffing, and managing any iterative project, from start to finish. Leading iterative development experts Kurt Bittner and Ian Spence introduce a proven, scalable approach that improves both agility and control at the same time, satisfying the needs of developers, managers, and the business alike. Their techniques are easy to understand, and easy to use with any iterative methodology, from Rational Unified Process to Extreme Programming to the Microsoft Solutions Framework. Whatever your role–team leader, program manager, project manager, developer, sponsor, or user representative–this book will help you Understand the key drivers of success in iterative projects Leverage “time boxing” to define project lifecycles and measure results Use Unified Process phases to facilitate controlled iterative development Master core concepts of iterative project management, including layering and evolution Create project roadmaps, including release plans Discover key patterns of risk management, estimation, organization, and iteration planning Understand what must be controlled centrally, and what you can safely delegate Transition smoothly to iterative processes Scale iterative project management from the smallest to the largest projects Align software investments with the needs of the business Whether you are interested in software development using RUP, OpenUP, or other agile processes, this book will help you reduce the anxiety and cost associated with software improvement by providing an easy, non-intrusive path toward improved results–without overwhelming you and your team.
Author |
: James Moyne |
Publisher |
: CRC Press |
Total Pages |
: 367 |
Release |
: 2018-10-08 |
ISBN-10 |
: 9781420040661 |
ISBN-13 |
: 1420040669 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Run-to-Run Control in Semiconductor Manufacturing by : James Moyne
Run-to-run (R2R) control is cutting-edge technology that allows modification of a product recipe between machine "runs," thereby minimizing process drift, shift, and variability-and with them, costs. Its effectiveness has been demonstrated in a variety of processes, such as vapor phase epitaxy, lithography, and chemical mechanical planarization. The only barrier to the semiconductor industry's widespread adoption of this highly effective process control is a lack of understanding of the technology. Run to Run Control in Semiconductor Manufacturing overcomes that barrier by offering in-depth analyses of R2R control.