Introductory Semiconductor Device Physics

Introductory Semiconductor Device Physics
Author :
Publisher : CRC Press
Total Pages : 301
Release :
ISBN-10 : 9781482262988
ISBN-13 : 1482262983
Rating : 4/5 (88 Downloads)

Synopsis Introductory Semiconductor Device Physics by : Greg Parker

Introduction to Semiconductor Device Physics is a popular and established text that offers a thorough introduction to the underlying physics of semiconductor devices. It begins with a review of basic solid state physics, then goes on to describe the properties of semiconductors including energy bands, the concept of effective mass, carrier concentr

Semiconductor Device Physics and Design

Semiconductor Device Physics and Design
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9781402064807
ISBN-13 : 1402064802
Rating : 4/5 (07 Downloads)

Synopsis Semiconductor Device Physics and Design by : Umesh Mishra

Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.

Semiconductor Physics and Devices

Semiconductor Physics and Devices
Author :
Publisher :
Total Pages : 746
Release :
ISBN-10 : 0071198628
ISBN-13 : 9780071198622
Rating : 4/5 (28 Downloads)

Synopsis Semiconductor Physics and Devices by : Donald A. Neamen

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.

The Physics of Semiconductors

The Physics of Semiconductors
Author :
Publisher : Springer Nature
Total Pages : 905
Release :
ISBN-10 : 9783030515690
ISBN-13 : 3030515699
Rating : 4/5 (90 Downloads)

Synopsis The Physics of Semiconductors by : Marius Grundmann

The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.

Semiconductor Optoelectronic Devices

Semiconductor Optoelectronic Devices
Author :
Publisher : Elsevier
Total Pages : 296
Release :
ISBN-10 : 9780080469782
ISBN-13 : 0080469787
Rating : 4/5 (82 Downloads)

Synopsis Semiconductor Optoelectronic Devices by : Joachim Piprek

Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. - Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software - Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters - Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices

Introduction to Semiconductor Device Modelling

Introduction to Semiconductor Device Modelling
Author :
Publisher : World Scientific
Total Pages : 242
Release :
ISBN-10 : 981023693X
ISBN-13 : 9789810236939
Rating : 4/5 (3X Downloads)

Synopsis Introduction to Semiconductor Device Modelling by : Christopher M. Snowden

This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Author :
Publisher : Springer
Total Pages : 648
Release :
ISBN-10 : 9781493911516
ISBN-13 : 1493911511
Rating : 4/5 (16 Downloads)

Synopsis Physics of Semiconductor Devices by : Massimo Rudan

This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of some basic fabrication steps, and to measuring methods for the semiconductor-device parameters.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 944
Release :
ISBN-10 : 9781119429111
ISBN-13 : 1119429110
Rating : 4/5 (11 Downloads)

Synopsis Physics of Semiconductor Devices by : Simon M. Sze

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices
Author :
Publisher : Cambridge University Press
Total Pages : 340
Release :
ISBN-10 : 1139473816
ISBN-13 : 9781139473811
Rating : 4/5 (16 Downloads)

Synopsis Introduction to Semiconductor Devices by : Kevin F. Brennan

From semiconductor fundamentals to semiconductor devices used in the telecommunications and computing industries, this 2005 book provides a solid grounding in the most important devices used in the hottest areas of electronic engineering. The book includes coverage of future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductors. Next, the field effect devices are described, including MODFETs and MOSFETs. Short channel effects and the challenges faced by continuing miniaturisation are then addressed. The rest of the book discusses the structure, behaviour, and operating requirements of semiconductor devices used in lightwave and wireless telecommunications systems. This is both an excellent senior/graduate text, and a valuable reference for engineers and researchers in the field.

Semiconductor Device Physics and Simulation

Semiconductor Device Physics and Simulation
Author :
Publisher : Springer Science & Business Media
Total Pages : 352
Release :
ISBN-10 : 0306457245
ISBN-13 : 9780306457241
Rating : 4/5 (45 Downloads)

Synopsis Semiconductor Device Physics and Simulation by : J.S. Yuan

The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.