Interpretability Of Machine Intelligence In Medical Image Computing
Download Interpretability Of Machine Intelligence In Medical Image Computing full books in PDF, epub, and Kindle. Read online free Interpretability Of Machine Intelligence In Medical Image Computing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Kenji Suzuki |
Publisher |
: Springer Nature |
Total Pages |
: 93 |
Release |
: 2019-10-24 |
ISBN-10 |
: 9783030338503 |
ISBN-13 |
: 3030338509 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support by : Kenji Suzuki
This book constitutes the refereed joint proceedings of the Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2019, and the 9th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 7 full papers presented at iMIMIC 2019 and the 3 full papers presented at ML-CDS 2019 were carefully reviewed and selected from 10 submissions to iMIMIC and numerous submissions to ML-CDS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning.
Author |
: Danail Stoyanov |
Publisher |
: Springer |
Total Pages |
: 158 |
Release |
: 2018-10-23 |
ISBN-10 |
: 9783030026288 |
ISBN-13 |
: 3030026280 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Understanding and Interpreting Machine Learning in Medical Image Computing Applications by : Danail Stoyanov
This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.
Author |
: Mauricio Reyes |
Publisher |
: Springer Nature |
Total Pages |
: 138 |
Release |
: 2021-09-21 |
ISBN-10 |
: 9783030874445 |
ISBN-13 |
: 3030874443 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data by : Mauricio Reyes
This book constitutes the refereed joint proceedings of the 4th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, and the First International Workshop on Topological Data Analysis and Its Applications for Medical Data, TDA4MedicalData 2021, held on September 27, 2021, in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021. The 7 full papers presented at iMIMIC 2021 and 5 full papers held at TDA4MedicalData 2021 were carefully reviewed and selected from 12 submissions each. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. TDA4MedicalData is focusing on using TDA techniques to enhance the performance, generalizability, efficiency, and explainability of the current methods applied to medical data.
Author |
: Mauricio Reyes |
Publisher |
: Springer Nature |
Total Pages |
: 134 |
Release |
: 2022-10-07 |
ISBN-10 |
: 9783031179761 |
ISBN-13 |
: 3031179765 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Interpretability of Machine Intelligence in Medical Image Computing by : Mauricio Reyes
This book constitutes the refereed joint proceedings of the 5th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2022, held in September 2022, in conjunction with the 25th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2022. The 10 full papers presented at iMIMIC 2022 were carefully reviewed and selected from 24 submissions each. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention.
Author |
: Jaime Cardoso |
Publisher |
: Springer Nature |
Total Pages |
: 292 |
Release |
: 2020-10-03 |
ISBN-10 |
: 9783030611668 |
ISBN-13 |
: 3030611663 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Interpretable and Annotation-Efficient Learning for Medical Image Computing by : Jaime Cardoso
This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.
Author |
: Erik R. Ranschaert |
Publisher |
: Springer |
Total Pages |
: 369 |
Release |
: 2019-01-29 |
ISBN-10 |
: 9783319948782 |
ISBN-13 |
: 3319948784 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Author |
: Christoph Molnar |
Publisher |
: Lulu.com |
Total Pages |
: 320 |
Release |
: 2020 |
ISBN-10 |
: 9780244768522 |
ISBN-13 |
: 0244768528 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Interpretable Machine Learning by : Christoph Molnar
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Author |
: Gobert Lee |
Publisher |
: Springer Nature |
Total Pages |
: 184 |
Release |
: 2020-02-06 |
ISBN-10 |
: 9783030331283 |
ISBN-13 |
: 3030331288 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Deep Learning in Medical Image Analysis by : Gobert Lee
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Author |
: S. Kevin Zhou |
Publisher |
: Academic Press |
Total Pages |
: 1074 |
Release |
: 2019-10-18 |
ISBN-10 |
: 9780128165867 |
ISBN-13 |
: 0128165863 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Handbook of Medical Image Computing and Computer Assisted Intervention by : S. Kevin Zhou
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
Author |
: Jasjit Suri |
Publisher |
: Elsevier |
Total Pages |
: 328 |
Release |
: 2022-11-29 |
ISBN-10 |
: 9780128199121 |
ISBN-13 |
: 0128199121 |
Rating |
: 4/5 (21 Downloads) |
Synopsis State of the Art in Neural Networks and Their Applications by : Jasjit Suri
State of the Art in Neural Networks and Their Applications, Volume Two presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. The book provides over views and case studies of advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing, and suitable data analytics useful for clinical diagnosis and research applications. The application of neural network, artificial intelligence and machine learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume One: Neural Networks in Oncology Imaging covers lung cancer, prostate cancer, and bladder cancer. Volume Two: Neural Networks in Brain Disorders and Other Diseases covers autism spectrum disorder, Alzheimer's disease, attention deficit hyperactivity disorder, hypertension, and other diseases. Written by experienced engineers in the field, these two volumes will help engineers, computer scientists, researchers, and clinicians understand the technology and applications of artificial neural networks. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of oncology imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), including coverage of computer-aided classification, unified deep learning frameworks, 3D MRI, PET/CT, and more - Covers deep learning cancer identification from histopathological images, medical image analysis, detection, segmentation and classification via AI