Intelligent Control

Intelligent Control
Author :
Publisher : World Scientific
Total Pages : 412
Release :
ISBN-10 : 9810210426
ISBN-13 : 9789810210427
Rating : 4/5 (26 Downloads)

Synopsis Intelligent Control by : Christopher John Harris

With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent experiences or evidence to improve its performance through a variety of learning schemas, that for practical implementation must demonstrate rapid learning convergence, be temporally stable, be robust to parameter changes and internal and external disturbances. It is shown in this book that a wide class of fuzzy logic and neural net based learning algorithms satisfy these conditions. It is demonstrated that this class of intelligent controllers is based upon a fixed nonlinear mapping of the input (sensor) vector, followed by an output layer linear mapping with coefficients that are updated by various first order learning laws. Under these conditions self-organising fuzzy logic controllers and neural net controllers have common learning attributes.A theme example of the navigation and control of an autonomous guided vehicle is included throughout, together with a series of bench examples to demonstrate this new theory and its applicability.

Intelligent Control

Intelligent Control
Author :
Publisher : Springer
Total Pages : 292
Release :
ISBN-10 : 9783319021355
ISBN-13 : 3319021354
Rating : 4/5 (55 Downloads)

Synopsis Intelligent Control by : Nazmul Siddique

Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.

Intelligent Control: Aspects Of Fuzzy Logic And Neural Nets

Intelligent Control: Aspects Of Fuzzy Logic And Neural Nets
Author :
Publisher : World Scientific
Total Pages : 403
Release :
ISBN-10 : 9789814505345
ISBN-13 : 981450534X
Rating : 4/5 (45 Downloads)

Synopsis Intelligent Control: Aspects Of Fuzzy Logic And Neural Nets by : Christopher J Harris

With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent experiences or evidence to improve its performance through a variety of learning schemas, that for practical implementation must demonstrate rapid learning convergence, be temporally stable, be robust to parameter changes and internal and external disturbances. It is shown in this book that a wide class of fuzzy logic and neural net based learning algorithms satisfy these conditions. It is demonstrated that this class of intelligent controllers is based upon a fixed nonlinear mapping of the input (sensor) vector, followed by an output layer linear mapping with coefficients that are updated by various first order learning laws. Under these conditions self-organising fuzzy logic controllers and neural net controllers have common learning attributes.A theme example of the navigation and control of an autonomous guided vehicle is included throughout, together with a series of bench examples to demonstrate this new theory and its applicability.

Intelligent Control Systems Using Soft Computing Methodologies

Intelligent Control Systems Using Soft Computing Methodologies
Author :
Publisher : CRC Press
Total Pages : 504
Release :
ISBN-10 : 9781420058147
ISBN-13 : 1420058142
Rating : 4/5 (47 Downloads)

Synopsis Intelligent Control Systems Using Soft Computing Methodologies by : Ali Zilouchian

In recent years, intelligent control has emerged as one of the most active and fruitful areas of research and development. Until now, however, there has been no comprehensive text that explores the subject with focus on the design and analysis of biological and industrial applications. Intelligent Control Systems Using Soft Computing Methodologies does all that and more. Beginning with an overview of intelligent control methodologies, the contributors present the fundamentals of neural networks, supervised and unsupervised learning, and recurrent networks. They address various implementation issues, then explore design and verification of neural networks for a variety of applications, including medicine, biology, digital signal processing, object recognition, computer networking, desalination technology, and oil refinery and chemical processes. The focus then shifts to fuzzy logic, with a review of the fundamental and theoretical aspects, discussion of implementation issues, and examples of applications, including control of autonomous underwater vehicles, navigation of space vehicles, image processing, robotics, and energy management systems. The book concludes with the integration of genetic algorithms into the paradigm of soft computing methodologies, including several more industrial examples, implementation issues, and open problems and open problems related to intelligent control technology. Suitable as a textbook or a reference, Intelligent Control Systems explores recent advances in the field from both the theoretical and the practical viewpoints. It also integrates intelligent control design methodologies to give designers a set of flexible, robust controllers and provide students with a tool for solving the examples and exercises within the book.

Advances In Intelligent Control

Advances In Intelligent Control
Author :
Publisher : CRC Press
Total Pages : 384
Release :
ISBN-10 : 0748400664
ISBN-13 : 9780748400669
Rating : 4/5 (64 Downloads)

Synopsis Advances In Intelligent Control by : C J Harris

"Advances in intelligent Control" is a collection of essays covering the latest research in the field. Based on a special issue of "The International Journal of Control", the book is arranged in two parts. Part one contains recent contributions of artificial neural networks to modelling and control. Part two concerns itself primarily with aspects of fuzzy logic in intelligent control, guidance and estimation, although some of the contributions either make direct equivalence relationships to neural networks or use hybrid methods where a neural network is used to develop the fuzzy rule base.

Neural and Fuzzy Logic Control of Drives and Power Systems

Neural and Fuzzy Logic Control of Drives and Power Systems
Author :
Publisher : Newnes
Total Pages : 416
Release :
ISBN-10 : 0750655585
ISBN-13 : 9780750655583
Rating : 4/5 (85 Downloads)

Synopsis Neural and Fuzzy Logic Control of Drives and Power Systems by : Marcian Cirstea

*Introduces cutting-edge control systems to a wide readership of engineers and students *The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies *Learn to use VHDL in real-world applications Introducing cutting edge control systems through real-world applications Neural networks and fuzzy logic based systems offer a modern control solution to AC machines used in variable speed drives, enabling industry to save costs and increase efficiency by replacing expensive and high-maintenance DC motor systems. The use of fast micros has revolutionised the field with sensorless vector control and direct torque control. This book reflects recent research findings and acts as a useful guide to the new generation of control systems for a wide readership of advanced undergraduate and graduate students, as well as practising engineers. The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications.

Lectures on Soft Computing and Fuzzy Logic

Lectures on Soft Computing and Fuzzy Logic
Author :
Publisher : Springer Science & Business Media
Total Pages : 356
Release :
ISBN-10 : 3790813966
ISBN-13 : 9783790813968
Rating : 4/5 (66 Downloads)

Synopsis Lectures on Soft Computing and Fuzzy Logic by : Antonio Di Nola

The present volume collects selected papers arising from lectures delivered by the authors at the School on Fuzzy Logic and Soft Computing held during the years 1996/97/98/99 and sponsored by the Salerno University. The authors contributing to this volume agreed with editors to write down, to enlarge and, in many cases, to rethink their original lectures, in order to offer to readership, a more compact presentation of the proposed topics. The aim of the volume is to offer a picture, as a job in progress, of the effort that is coming in founding and developing soft computing's techniques. The volume contains papers aimed to report on recent results containing genuinely logical aspects of fuzzy logic. The topics treated in this area cover algebraic aspects of Lukasiewicz Logic, Fuzzy Logic as the logic of continuous t-norms, Intuitionistic Fuzzy Logic. Aspects of fuzzy logic based on similar ity relation are presented in connection with the problem of flexible querying in deductive database. Departing from fuzzy logic, some papers present re sults in Probability Logic treating computational aspects, results based on indishernability relation and a non commutative version of generalized effect algebras. Several strict applications of soft computing are presented in the book. Indeed we find applications ranging among pattern recognition, image and signal processing, evolutionary agents, fuzzy cellular networks, classi fication in fuzzy environments. The volume is then intended to serve as a reference work for foundational logico-algebraic aspect of Soft Computing and for concrete applications of soft computing technologies.

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms
Author :
Publisher : CRC Press
Total Pages : 366
Release :
ISBN-10 : 9781000722949
ISBN-13 : 1000722945
Rating : 4/5 (49 Downloads)

Synopsis Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms by : Lakhmi C. Jain

Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.

Computational Intelligence

Computational Intelligence
Author :
Publisher : John Wiley & Sons
Total Pages : 524
Release :
ISBN-10 : 9781118534816
ISBN-13 : 1118534816
Rating : 4/5 (16 Downloads)

Synopsis Computational Intelligence by : Nazmul Siddique

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspects of fuzzy, neural and evolutionary approaches with worked out examples, MATLAB® exercises and applications in each chapter Presents the synergies of technologies of computational intelligence such as evolutionary fuzzy neural fuzzy and evolutionary neural systems Considers real world problems in the domain of systems modelling, control and optimization Contains a foreword written by Lotfi Zadeh Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing is an ideal text for final year undergraduate, postgraduate and research students in electrical, control, computer, industrial and manufacturing engineering.

Handbook of Intelligent Control

Handbook of Intelligent Control
Author :
Publisher : Van Nostrand Reinhold Company
Total Pages : 600
Release :
ISBN-10 : STANFORD:36105001724256
ISBN-13 :
Rating : 4/5 (56 Downloads)

Synopsis Handbook of Intelligent Control by : David A. White

This handbook shows the reader how to develop neural networks and apply them to various engineering control problems. Based on a workshop on aerospace applications, this tutorial covers integration of neural networks with existing control architectures as well as new neurocontrol architectures in nonlinear control.