Inhomogeneous Optical Waveguides

Inhomogeneous Optical Waveguides
Author :
Publisher : Springer Science & Business Media
Total Pages : 273
Release :
ISBN-10 : 9781461587620
ISBN-13 : 146158762X
Rating : 4/5 (20 Downloads)

Synopsis Inhomogeneous Optical Waveguides by : A. Ghatak

The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides
Author :
Publisher : Elsevier
Total Pages : 578
Release :
ISBN-10 : 9780080455068
ISBN-13 : 0080455069
Rating : 4/5 (68 Downloads)

Synopsis Fundamentals of Optical Waveguides by : Katsunari Okamoto

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)

Inhomogeneous Optical Waveguides

Inhomogeneous Optical Waveguides
Author :
Publisher : Springer
Total Pages : 269
Release :
ISBN-10 : 1461587638
ISBN-13 : 9781461587637
Rating : 4/5 (38 Downloads)

Synopsis Inhomogeneous Optical Waveguides by : Ajoy Ghatak

The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.

Optical Waveguides

Optical Waveguides
Author :
Publisher : CRC Press
Total Pages : 424
Release :
ISBN-10 : 9781420017779
ISBN-13 : 1420017772
Rating : 4/5 (79 Downloads)

Synopsis Optical Waveguides by : María L. Calvo

Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 9401047138
ISBN-13 : 9789401047135
Rating : 4/5 (38 Downloads)

Synopsis Optical Waveguide Theory by the Finite Element Method by : Masanori Koshiba

Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

The Essence of Dielectric Waveguides

The Essence of Dielectric Waveguides
Author :
Publisher : Springer Science & Business Media
Total Pages : 529
Release :
ISBN-10 : 9780387497990
ISBN-13 : 0387497994
Rating : 4/5 (90 Downloads)

Synopsis The Essence of Dielectric Waveguides by : C. Yeh

The Essence of Dielectric Waveguides provides an overview of the fundamental behavior of guided waves, essential to finding and interpreting the results of electromagnetic waveguide problems. Clearly and concisely written as well as brilliantly organized, this volume includes a detailed description of the fundamentals of electromagnetics, as well as a new discussion on boundary conditions and attenuation. It also covers the propagation characteristics of guided waves along classical canonical dielectric structures – planar, circular cylindrical, rectangular and elliptical waveguides. What’s more, the authors have included extensive coverage of inhomogeneous structures and approximate methods, as well as several powerful numerical approaches specifically applicable to dielectric waveguides.

Progress in Planar Optical Waveguides

Progress in Planar Optical Waveguides
Author :
Publisher : Springer
Total Pages : 251
Release :
ISBN-10 : 9783662489840
ISBN-13 : 3662489848
Rating : 4/5 (40 Downloads)

Synopsis Progress in Planar Optical Waveguides by : Xianping Wang

This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

Optical Waveguide Sciences

Optical Waveguide Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 328
Release :
ISBN-10 : 9789400968752
ISBN-13 : 9400968752
Rating : 4/5 (52 Downloads)

Synopsis Optical Waveguide Sciences by : H. Huang-Chia

Over the past decade or more, the art relating to modern optical waveguides has evolved as a nighly focused interdis ciplinary field, so attractive, stimulating and full of far reachin3 promise that no parallel could be found earlier in other branches of applied sciences except, perhaps, in solid state electronics and computer technology. This Proceedings, with a selection of 53 papers and briefs by 96 authors of 16 countries, is of real internation al dimensions. It is the outgrowth of the International Symposium held June 20-23, 1983, the first international meeting on this subject taking place in China. Since almost every country in the world, Eastern or ~;estern, large or small, has been involved in the study and promotion of this technological revolution, it is only natural that China snoula be happy to serve as host country of the international meeting to promote an interchange of experiences and iaeas conducive to greater achievements in the future.

Foundations of Optical Waveguides

Foundations of Optical Waveguides
Author :
Publisher : Elsevier Publishing Company
Total Pages : 432
Release :
ISBN-10 : UOM:39015047335487
ISBN-13 :
Rating : 4/5 (87 Downloads)

Synopsis Foundations of Optical Waveguides by : Gilbert H. Owyang

Beam Propagation Method for Design of Optical Waveguide Devices

Beam Propagation Method for Design of Optical Waveguide Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 401
Release :
ISBN-10 : 9781119083375
ISBN-13 : 1119083370
Rating : 4/5 (75 Downloads)

Synopsis Beam Propagation Method for Design of Optical Waveguide Devices by : Ginés Lifante Pedrola

The basic of the BPM technique in the frequency domain relies on treating the slowly varying envelope of the monochromatic electromagnetic field under paraxial propagation, thus allowing efficient numerical computation in terms of speed and allocated memory. In addition, the BPM based on finite differences is an easy way to implement robust and efficient computer codes. This book presents several approaches for treating the light: wide-angle, scalar approach, semivectorial treatment, and full vectorial treatment of the electromagnetic fields. Also, special topics in BPM cover the simulation of light propagation in anisotropic media, non-linear materials, electro-optic materials, and media with gain/losses, and describe how BPM can deal with strong index discontinuities or waveguide gratings, by introducing the bidirectional-BPM. BPM in the time domain is also described, and the book includes the powerful technique of finite difference time domain method, which fills the gap when the standard BPM is no longer applicable. Once the description of these numerical techniques have been detailed, the last chapter includes examples of passive, active and functional integrated photonic devices, such as waveguide reflectors, demultiplexers, polarization converters, electro-optic modulators, lasers or frequency converters. The book will help readers to understand several BPM approaches, to build their own codes, or to properly use the existing commercial software based on these numerical techniques.