Illuminating Statistical Analysis Using Scenarios And Simulations
Download Illuminating Statistical Analysis Using Scenarios And Simulations full books in PDF, epub, and Kindle. Read online free Illuminating Statistical Analysis Using Scenarios And Simulations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Jeffrey E. Kottemann |
Publisher |
: John Wiley & Sons |
Total Pages |
: 314 |
Release |
: 2017-02-06 |
ISBN-10 |
: 9781119296348 |
ISBN-13 |
: 111929634X |
Rating |
: 4/5 (48 Downloads) |
Synopsis Illuminating Statistical Analysis Using Scenarios and Simulations by : Jeffrey E. Kottemann
Features an integrated approach of statistical scenarios and simulations to aid readers in developing key intuitions needed to understand the wide ranging concepts and methods of statistics and inference Illuminating Statistical Analysis Using Scenarios and Simulations presents the basic concepts of statistics and statistical inference using the dual mechanisms of scenarios and simulations. This approach helps readers develop key intuitions and deep understandings of statistical analysis. Scenario-specific sampling simulations depict the results that would be obtained by a very large number of individuals investigating the same scenario, each with their own evidence, while graphical depictions of the simulation results present clear and direct pathways to intuitive methods for statistical inference. These intuitive methods can then be easily linked to traditional formulaic methods, and the author does not simply explain the linkages, but rather provides demonstrations throughout for a broad range of statistical phenomena. In addition, induction and deduction are repeatedly interwoven, which fosters a natural "need to know basis" for ordering the topic coverage. Examining computer simulation results is central to the discussion and provides an illustrative way to (re)discover the properties of sample statistics, the role of chance, and to (re)invent corresponding principles of statistical inference. In addition, the simulation results foreshadow the various mathematical formulas that underlie statistical analysis. In addition, this book: • Features both an intuitive and analytical perspective and includes a broad introduction to the use of Monte Carlo simulation and formulaic methods for statistical analysis • Presents straight-forward coverage of the essentials of basic statistics and ensures proper understanding of key concepts such as sampling distributions, the effects of sample size and variance on uncertainty, analysis of proportion, mean and rank differences, covariance, correlation, and regression • Introduces advanced topics such as Bayesian statistics, data mining, model cross-validation, robust regression, and resampling • Contains numerous example problems in each chapter with detailed solutions as well as an appendix that serves as a manual for constructing simulations quickly and easily using Microsoft® Office Excel® Illuminating Statistical Analysis Using Scenarios and Simulations is an ideal textbook for courses, seminars, and workshops in statistics and statistical inference and is appropriate for self-study as well. The book also serves as a thought-provoking treatise for researchers, scientists, managers, technicians, and others with a keen interest in statistical analysis. Jeffrey E. Kottemann, Ph.D., is Professor in the Perdue School at Salisbury University. Dr. Kottemann has published articles in a wide variety of academic research journals in the fields of business administration, computer science, decision sciences, economics, engineering, information systems, psychology, and public administration. He received his Ph.D. in Systems and Quantitative Methods from the University of Arizona.
Author |
: Jeffrey E. Kottemann |
Publisher |
: John Wiley & Sons |
Total Pages |
: 310 |
Release |
: 2017-03-06 |
ISBN-10 |
: 9781119296331 |
ISBN-13 |
: 1119296331 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Illuminating Statistical Analysis Using Scenarios and Simulations by : Jeffrey E. Kottemann
Features an integrated approach of statistical scenarios and simulations to aid readers in developing key intuitions needed to understand the wide ranging concepts and methods of statistics and inference Illuminating Statistical Analysis Using Scenarios and Simulations presents the basic concepts of statistics and statistical inference using the dual mechanisms of scenarios and simulations. This approach helps readers develop key intuitions and deep understandings of statistical analysis. Scenario-specific sampling simulations depict the results that would be obtained by a very large number of individuals investigating the same scenario, each with their own evidence, while graphical depictions of the simulation results present clear and direct pathways to intuitive methods for statistical inference. These intuitive methods can then be easily linked to traditional formulaic methods, and the author does not simply explain the linkages, but rather provides demonstrations throughout for a broad range of statistical phenomena. In addition, induction and deduction are repeatedly interwoven, which fosters a natural "need to know basis" for ordering the topic coverage. Examining computer simulation results is central to the discussion and provides an illustrative way to (re)discover the properties of sample statistics, the role of chance, and to (re)invent corresponding principles of statistical inference. In addition, the simulation results foreshadow the various mathematical formulas that underlie statistical analysis. In addition, this book: • Features both an intuitive and analytical perspective and includes a broad introduction to the use of Monte Carlo simulation and formulaic methods for statistical analysis • Presents straight-forward coverage of the essentials of basic statistics and ensures proper understanding of key concepts such as sampling distributions, the effects of sample size and variance on uncertainty, analysis of proportion, mean and rank differences, covariance, correlation, and regression • Introduces advanced topics such as Bayesian statistics, data mining, model cross-validation, robust regression, and resampling • Contains numerous example problems in each chapter with detailed solutions as well as an appendix that serves as a manual for constructing simulations quickly and easily using Microsoft® Office Excel® Illuminating Statistical Analysis Using Scenarios and Simulations is an ideal textbook for courses, seminars, and workshops in statistics and statistical inference and is appropriate for self-study as well. The book also serves as a thought-provoking treatise for researchers, scientists, managers, technicians, and others with a keen interest in statistical analysis. Jeffrey E. Kottemann, Ph.D., is Professor in the Perdue School at Salisbury University. Dr. Kottemann has published articles in a wide variety of academic research journals in the fields of business administration, computer science, decision sciences, economics, engineering, information systems, psychology, and public administration. He received his Ph.D. in Systems and Quantitative Methods from the University of Arizona.
Author |
: András Jávor |
Publisher |
: |
Total Pages |
: 378 |
Release |
: 1990 |
ISBN-10 |
: UCAL:B4371760 |
ISBN-13 |
: |
Rating |
: 4/5 (60 Downloads) |
Synopsis Problem Solving by Simulation by : András Jávor
Author |
: Deborah G. Mayo |
Publisher |
: Cambridge University Press |
Total Pages |
: 503 |
Release |
: 2018-09-20 |
ISBN-10 |
: 9781108563307 |
ISBN-13 |
: 1108563309 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Author |
: |
Publisher |
: |
Total Pages |
: 510 |
Release |
: 2003 |
ISBN-10 |
: UOM:39015047946945 |
ISBN-13 |
: |
Rating |
: 4/5 (45 Downloads) |
Synopsis Enabling Technology for Simulation Science by :
Author |
: Kenneth Train |
Publisher |
: Cambridge University Press |
Total Pages |
: 399 |
Release |
: 2009-07-06 |
ISBN-10 |
: 9780521766555 |
ISBN-13 |
: 0521766559 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Discrete Choice Methods with Simulation by : Kenneth Train
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Author |
: Andrea Saltelli |
Publisher |
: John Wiley & Sons |
Total Pages |
: 232 |
Release |
: 2004-07-16 |
ISBN-10 |
: 9780470870945 |
ISBN-13 |
: 047087094X |
Rating |
: 4/5 (45 Downloads) |
Synopsis Sensitivity Analysis in Practice by : Andrea Saltelli
Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.
Author |
: |
Publisher |
: |
Total Pages |
: 524 |
Release |
: 1990 |
ISBN-10 |
: UCSD:31822024630204 |
ISBN-13 |
: |
Rating |
: 4/5 (04 Downloads) |
Synopsis Proceedings of the ... National Passive Solar Conference by :
Author |
: Vic Barnett |
Publisher |
: John Wiley & Sons |
Total Pages |
: 616 |
Release |
: 1994-05-09 |
ISBN-10 |
: UCSD:31822016471997 |
ISBN-13 |
: |
Rating |
: 4/5 (97 Downloads) |
Synopsis Outliers in Statistical Data by : Vic Barnett
Every essential area is thoroughly updated to reflect the latest state of knowledge. All the topics are fully revised and extended, and additional topics and new emphases are presented.
Author |
: I. Gusti Ngurah Agung |
Publisher |
: John Wiley & Sons |
Total Pages |
: 506 |
Release |
: 2011-02-15 |
ISBN-10 |
: 9780470828458 |
ISBN-13 |
: 0470828455 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Cross Section and Experimental Data Analysis Using EViews by : I. Gusti Ngurah Agung
A practical guide to selecting and applying the most appropriate model for analysis of cross section data using EViews. "This book is a reflection of the vast experience and knowledge of the author. It is a useful reference for students and practitioners dealing with cross sectional data analysis ... The strength of the book lies in its wealth of material and well structured guidelines ..." Prof. Yohanes Eko Riyanto, Nanyang Technological University, Singapore "This is superb and brilliant. Prof. Agung has skilfully transformed his best experiences into new knowledge ... creating a new way of understanding data analysis." Dr. I Putu Gede Ary Suta, The Ary Suta Center, Jakarta Basic theoretical concepts of statistics as well as sampling methods are often misinterpreted by students and less experienced researchers. This book addresses this issue by providing a hands-on practical guide to conducting data analysis using EViews combined with a variety of illustrative models (and their extensions). Models having numerically dependent variables based on a cross-section data set (such as univariate, multivariate and nonlinear models as well as non-parametric regressions) are concentrated on. It is shown that a wide variety of hypotheses can easily be tested using EViews. Cross Section and Experimental Data Analysis Using EViews: Provides step-by-step directions on how to apply EViews to cross section data analysis - from multivariate analysis and nonlinear models to non-parametric regression Presents a method to test for all possible hypotheses based on each model Proposes a new method for data analysis based on a multifactorial design model Demonstrates that statistical summaries in the form of tabulations are invaluable inputs for strategic decision making Contains 200 examples with special notes and comments based on the author’s own empirical findings as well as over 400 illustrative outputs of regressions from EViews Techniques are illustrated through practical examples from real situations Comes with supplementary material, including work-files containing selected equation and system specifications that have been applied in the book This user-friendly introduction to EViews is ideal for Advanced undergraduate and graduate students taking finance, econometrics, population, or public policy courses, as well as applied policy researchers.