Handbook of Research on Big Data Clustering and Machine Learning

Handbook of Research on Big Data Clustering and Machine Learning
Author :
Publisher : IGI Global
Total Pages : 499
Release :
ISBN-10 : 9781799801078
ISBN-13 : 1799801071
Rating : 4/5 (78 Downloads)

Synopsis Handbook of Research on Big Data Clustering and Machine Learning by : Garcia Marquez, Fausto Pedro

As organizations continue to develop, there is an increasing need for technological methods that can keep up with the rising amount of data and information that is being generated. Machine learning is a tool that has become powerful due to its ability to analyze large amounts of data quickly. Machine learning is one of many technological advancements that is being implemented into a multitude of specialized fields. An extensive study on the execution of these advancements within professional industries is necessary. The Handbook of Research on Big Data Clustering and Machine Learning is an essential reference source that synthesizes the analytic principles of clustering and machine learning to big data and provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of management. Featuring research on topics such as project management, contextual data modeling, and business information systems, this book is ideally designed for engineers, economists, finance officers, marketers, decision makers, business professionals, industry practitioners, academicians, students, and researchers seeking coverage on the implementation of big data and machine learning within specific professional fields.

Machine Learning and Big Data

Machine Learning and Big Data
Author :
Publisher : John Wiley & Sons
Total Pages : 544
Release :
ISBN-10 : 9781119654742
ISBN-13 : 1119654742
Rating : 4/5 (42 Downloads)

Synopsis Machine Learning and Big Data by : Uma N. Dulhare

This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.

Clustering Methods for Big Data Analytics

Clustering Methods for Big Data Analytics
Author :
Publisher : Springer
Total Pages : 192
Release :
ISBN-10 : 9783319978642
ISBN-13 : 3319978640
Rating : 4/5 (42 Downloads)

Synopsis Clustering Methods for Big Data Analytics by : Olfa Nasraoui

This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Data Clustering

Data Clustering
Author :
Publisher : CRC Press
Total Pages : 648
Release :
ISBN-10 : 9781466558229
ISBN-13 : 1466558229
Rating : 4/5 (29 Downloads)

Synopsis Data Clustering by : Charu C. Aggarwal

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Fog Computing, Deep Learning and Big Data Analytics-Research Directions

Fog Computing, Deep Learning and Big Data Analytics-Research Directions
Author :
Publisher : Springer
Total Pages : 80
Release :
ISBN-10 : 9789811332098
ISBN-13 : 9811332096
Rating : 4/5 (98 Downloads)

Synopsis Fog Computing, Deep Learning and Big Data Analytics-Research Directions by : C.S.R. Prabhu

This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management. This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions.

Applications of Machine Learning in Big-Data Analytics and Cloud Computing

Applications of Machine Learning in Big-Data Analytics and Cloud Computing
Author :
Publisher : CRC Press
Total Pages : 346
Release :
ISBN-10 : 9781000793550
ISBN-13 : 1000793559
Rating : 4/5 (50 Downloads)

Synopsis Applications of Machine Learning in Big-Data Analytics and Cloud Computing by : Subhendu Kumar Pani

Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)
Author :
Publisher : World Scientific
Total Pages : 1001
Release :
ISBN-10 : 9789811204586
ISBN-13 : 9811204586
Rating : 4/5 (86 Downloads)

Synopsis Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) by :

This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.

Statistical Modeling in Machine Learning

Statistical Modeling in Machine Learning
Author :
Publisher : Academic Press
Total Pages : 398
Release :
ISBN-10 : 9780323972529
ISBN-13 : 0323972527
Rating : 4/5 (29 Downloads)

Synopsis Statistical Modeling in Machine Learning by : Tilottama Goswami

Statistical Modeling in Machine Learning: Concepts and Applications presents the basic concepts and roles of statistics, exploratory data analysis and machine learning. The various aspects of Machine Learning are discussed along with basics of statistics. Concepts are presented with simple examples and graphical representation for better understanding of techniques. This book takes a holistic approach – putting key concepts together with an in-depth treatise on multi-disciplinary applications of machine learning. New case studies and research problem statements are discussed, which will help researchers in their application areas based on the concepts of statistics and machine learning. Statistical Modeling in Machine Learning: Concepts and Applications will help statisticians, machine learning practitioners and programmers solving various tasks such as classification, regression, clustering, forecasting, recommending and more. - Provides a comprehensive overview of the state-of-the-art in statistical concepts applied to Machine Learning with the help of real-life problems, applications and tutorials - Presents a step-by-step approach from fundamentals to advanced techniques - Includes Case Studies with both successful and unsuccessful applications of Machine Learning to understand challenges in its implementation, along with worked examples

Handbook of Research on Big Data and the IoT

Handbook of Research on Big Data and the IoT
Author :
Publisher : IGI Global
Total Pages : 602
Release :
ISBN-10 : 9781522574330
ISBN-13 : 1522574336
Rating : 4/5 (30 Downloads)

Synopsis Handbook of Research on Big Data and the IoT by : Kaur, Gurjit

The increase in connected devices in the internet of things (IoT) is leading to an exponential increase in the data that an organization is required to manage. To successfully utilize IoT in businesses, big data analytics are necessary in order to efficiently sort through the increased data. The combination of big data and IoT can thus enable new monitoring services and powerful processing of sensory data streams. The Handbook of Research on Big Data and the IoT is a pivotal reference source that provides vital research on emerging trends and recent innovative applications of big data and IoT, challenges facing organizations and the implications of these technologies on society, and best practices for their implementation. While highlighting topics such as bootstrapping, data fusion, and graph mining, this publication is ideally designed for IT specialists, managers, policymakers, analysts, software engineers, academicians, and researchers.