Handbook of Advanced Multilevel Analysis

Handbook of Advanced Multilevel Analysis
Author :
Publisher : Psychology Press
Total Pages : 408
Release :
ISBN-10 : 9781136951275
ISBN-13 : 113695127X
Rating : 4/5 (75 Downloads)

Synopsis Handbook of Advanced Multilevel Analysis by : Joop Hox

This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed. Each chapter features examples that use actual datasets. These datasets, as well as the code to run the models, are available on the book’s website http://www.hlm-online.com . Each chapter includes an introduction that sets the stage for the material to come and a conclusion. Divided into five sections, the first provides a broad introduction to the field that serves as a framework for understanding the latter chapters. Part 2 focuses on multilevel latent variable modeling including item response theory and mixture modeling. Section 3 addresses models used for longitudinal data including growth curve and structural equation modeling. Special estimation problems are examined in section 4 including the difficulties involved in estimating survival analysis, Bayesian estimation, bootstrapping, multiple imputation, and complicated models, including generalized linear models, optimal design in multilevel models, and more. The book’s concluding section focuses on statistical design issues encountered when doing multilevel modeling including nested designs, analyzing cross-classified models, and dyadic data analysis. Intended for methodologists, statisticians, and researchers in a variety of fields including psychology, education, and the social and health sciences, this handbook also serves as an excellent text for graduate and PhD level courses in multilevel modeling. A basic knowledge of multilevel modeling is assumed.

Handbook of Multilevel Analysis

Handbook of Multilevel Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 498
Release :
ISBN-10 : 9780387731865
ISBN-13 : 0387731865
Rating : 4/5 (65 Downloads)

Synopsis Handbook of Multilevel Analysis by : Jan Deleeuw

This book presents the state of the art in multilevel analysis, with an emphasis on more advanced topics. These topics are discussed conceptually, analyzed mathematically, and illustrated by empirical examples. Multilevel analysis is the statistical analysis of hierarchically and non-hierarchically nested data. The simplest example is clustered data, such as a sample of students clustered within schools. Multilevel data are especially prevalent in the social and behavioral sciences and in the biomedical sciences. The chapter authors are all leading experts in the field. Given the omnipresence of multilevel data in the social, behavioral, and biomedical sciences, this book is essential for empirical researchers in these fields.

The SAGE Handbook of Multilevel Modeling

The SAGE Handbook of Multilevel Modeling
Author :
Publisher : SAGE
Total Pages : 954
Release :
ISBN-10 : 9781473971318
ISBN-13 : 1473971314
Rating : 4/5 (18 Downloads)

Synopsis The SAGE Handbook of Multilevel Modeling by : Marc A. Scott

In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.

Handbook of Structural Equation Modeling

Handbook of Structural Equation Modeling
Author :
Publisher : Guilford Publications
Total Pages : 801
Release :
ISBN-10 : 9781462544646
ISBN-13 : 1462544649
Rating : 4/5 (46 Downloads)

Synopsis Handbook of Structural Equation Modeling by : Rick H. Hoyle

"This accessible volume presents both the mechanics of structural equation modeling (SEM) and specific SEM strategies and applications. The editor, along with an international group of contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results"--

Handbook of Data Analysis

Handbook of Data Analysis
Author :
Publisher : SAGE
Total Pages : 729
Release :
ISBN-10 : 9781446203446
ISBN-13 : 1446203441
Rating : 4/5 (46 Downloads)

Synopsis Handbook of Data Analysis by : Melissa A Hardy

′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.

The Handbook of Multilevel Theory, Measurement, and Analysis

The Handbook of Multilevel Theory, Measurement, and Analysis
Author :
Publisher : American Psychological Association (APA)
Total Pages : 0
Release :
ISBN-10 : 1433830019
ISBN-13 : 9781433830013
Rating : 4/5 (19 Downloads)

Synopsis The Handbook of Multilevel Theory, Measurement, and Analysis by : Stephen E. Humphrey

This handbook shows scholars how to conduct multilevel research. Chapters discuss the importance of context, dynamics, and complexity, and guide readers through the nuances of research design and analysis

Handbook of International Large-Scale Assessment

Handbook of International Large-Scale Assessment
Author :
Publisher : CRC Press
Total Pages : 623
Release :
ISBN-10 : 9781439895146
ISBN-13 : 1439895147
Rating : 4/5 (46 Downloads)

Synopsis Handbook of International Large-Scale Assessment by : Leslie Rutkowski

Winner of the 2017 AERA Division D Significant Contribution to Educational Measurement and Research Methodology Award! Technological and statistical advances, along with a strong interest in gathering more information about the state of our educational systems, have made it possible to assess more students, in more countries, more often, and in more subject domains. The Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis brings together recognized scholars in the field of ILSA, behavioral statistics, and policy to develop a detailed guide that goes beyond database user manuals. After highlighting the importance of ILSA data to policy and research, the book reviews methodological aspects and features of the studies based on operational considerations, analytics, and reporting. The book then describes methods of interest to advanced graduate students, researchers, and policy analysts who have a good grounding in quantitative methods, but who are not necessarily quantitative methodologists. In addition, it provides a detailed exposition of the technical details behind these assessments, including the test design, the sampling framework, and estimation methods, with a focus on how these issues impact analysis choices.

Generalized Latent Variable Modeling

Generalized Latent Variable Modeling
Author :
Publisher : CRC Press
Total Pages : 523
Release :
ISBN-10 : 9780203489437
ISBN-13 : 0203489438
Rating : 4/5 (37 Downloads)

Synopsis Generalized Latent Variable Modeling by : Anders Skrondal

This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

The SAGE Handbook of Regression Analysis and Causal Inference

The SAGE Handbook of Regression Analysis and Causal Inference
Author :
Publisher : SAGE
Total Pages : 425
Release :
ISBN-10 : 9781473908352
ISBN-13 : 1473908353
Rating : 4/5 (52 Downloads)

Synopsis The SAGE Handbook of Regression Analysis and Causal Inference by : Henning Best

′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.

Doing Meta-Analysis with R

Doing Meta-Analysis with R
Author :
Publisher : CRC Press
Total Pages : 500
Release :
ISBN-10 : 9781000435634
ISBN-13 : 1000435636
Rating : 4/5 (34 Downloads)

Synopsis Doing Meta-Analysis with R by : Mathias Harrer

Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book