Genetic Programming Ii
Download Genetic Programming Ii full books in PDF, epub, and Kindle. Read online free Genetic Programming Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Una-May O'Reilly |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 330 |
Release |
: 2006-03-16 |
ISBN-10 |
: 9780387232546 |
ISBN-13 |
: 0387232540 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Genetic Programming Theory and Practice II by : Una-May O'Reilly
The work described in this book was first presented at the Second Workshop on Genetic Programming, Theory and Practice, organized by the Center for the Study of Complex Systems at the University of Michigan, Ann Arbor, 13-15 May 2004. The goal of this workshop series is to promote the exchange of research results and ideas between those who focus on Genetic Programming (GP) theory and those who focus on the application of GP to various re- world problems. In order to facilitate these interactions, the number of talks and participants was small and the time for discussion was large. Further, participants were asked to review each other's chapters before the workshop. Those reviewer comments, as well as discussion at the workshop, are reflected in the chapters presented in this book. Additional information about the workshop, addendums to chapters, and a site for continuing discussions by participants and by others can be found at http://cscs.umich.edu:8000/GPTP-20041. We thank all the workshop participants for making the workshop an exciting and productive three days. In particular we thank all the authors, without whose hard work and creative talents, neither the workshop nor the book would be possible. We also thank our keynote speakers Lawrence ("Dave") Davis of NuTech Solutions, Inc., Jordan Pollack of Brandeis University, and Richard Lenski of Michigan State University, who delivered three thought-provoking speeches that inspired a great deal of discussion among the participants.
Author |
: John R. Koza |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 626 |
Release |
: 2005-03-21 |
ISBN-10 |
: 0387250670 |
ISBN-13 |
: 9780387250670 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Genetic Programming IV by : John R. Koza
Genetic Programming IV: Routine Human-Competitive Machine Intelligence presents the application of GP to a wide variety of problems involving automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic pathways. The book describes fifteen instances where GP has created an entity that either infringes or duplicates the functionality of a previously patented 20th-century invention, six instances where it has done the same with respect to post-2000 patented inventions, two instances where GP has created a patentable new invention, and thirteen other human-competitive results. The book additionally establishes: GP now delivers routine human-competitive machine intelligence GP is an automated invention machine GP can create general solutions to problems in the form of parameterized topologies GP has delivered qualitatively more substantial results in synchrony with the relentless iteration of Moore's Law
Author |
: Rick Riolo |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 322 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781441989833 |
ISBN-13 |
: 1441989838 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Genetic Programming Theory and Practice by : Rick Riolo
Genetic Programming Theory and Practice explores the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The material contained in this contributed volume was developed from a workshop at the University of Michigan's Center for the Study of Complex Systems where an international group of genetic programming theorists and practitioners met to examine how GP theory informs practice and how GP practice impacts GP theory. The contributions cover the full spectrum of this relationship and are written by leading GP theorists from major universities, as well as active practitioners from leading industries and businesses. Chapters include such topics as John Koza's development of human-competitive electronic circuit designs; David Goldberg's application of "competent GA" methodology to GP; Jason Daida's discovery of a new set of factors underlying the dynamics of GP starting from applied research; and Stephen Freeland's essay on the lessons of biology for GP and the potential impact of GP on evolutionary theory.
Author |
: John R. Koza |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 1516 |
Release |
: 1999 |
ISBN-10 |
: 1558605436 |
ISBN-13 |
: 9781558605435 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Genetic Programming III by : John R. Koza
Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.
Author |
: Wolfgang Banzhaf |
Publisher |
: Springer Science & Business |
Total Pages |
: 506 |
Release |
: 1998 |
ISBN-10 |
: 155860510X |
ISBN-13 |
: 9781558605107 |
Rating |
: 4/5 (0X Downloads) |
Synopsis Genetic Programming by : Wolfgang Banzhaf
To order this title for shipment to Austria, Germany, or Switzerland, please contact dpunkt verlag directly. "[The authors] have performed a remarkable double service with this excellent book on genetic programming. First, they give an up-to-date view of the rapidly growing field of automatic creation of computer programs by means of evolution and, second, they bring together their own innovative and formidable work on evolution of assembly language machine code and linear genomes." --John R. Koza Since the early 1990s, genetic programming (GP)-a discipline whose goal is to enable the automatic generation of computer programs-has emerged as one of the most promising paradigms for fast, productive software development. GP combines biological metaphors gleaned from Darwin's theory of evolution with computer-science approaches drawn from the field of machine learning to create programs that are capable of adapting or recreating themselves for open-ended tasks. This unique introduction to GP provides a detailed overview of the subject and its antecedents, with extensive references to the published and online literature. In addition to explaining the fundamental theory and important algorithms, the text includes practical discussions covering a wealth of potential applications and real-world implementation techniques. Software professionals needing to understand and apply GP concepts will find this book an invaluable practical and theoretical guide.
Author |
: Kenneth E. Kinnear (Jr.) |
Publisher |
: MIT Press |
Total Pages |
: 544 |
Release |
: 1994 |
ISBN-10 |
: 0262111888 |
ISBN-13 |
: 9780262111881 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Advances in Genetic Programming by : Kenneth E. Kinnear (Jr.)
Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.
Author |
: Michael Affenzeller |
Publisher |
: CRC Press |
Total Pages |
: 395 |
Release |
: 2009-04-09 |
ISBN-10 |
: 9781420011326 |
ISBN-13 |
: 1420011324 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Genetic Algorithms and Genetic Programming by : Michael Affenzeller
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al
Author |
: |
Publisher |
: Lulu.com |
Total Pages |
: 252 |
Release |
: 2008 |
ISBN-10 |
: 9781409200734 |
ISBN-13 |
: 1409200736 |
Rating |
: 4/5 (34 Downloads) |
Synopsis A Field Guide to Genetic Programming by :
Genetic programming (GP) is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until high-fitness solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. This unique overview of this exciting technique is written by three of the most active scientists in GP. See www.gp-field-guide.org.uk for more information on the book.
Author |
: Melanie Mitchell |
Publisher |
: MIT Press |
Total Pages |
: 226 |
Release |
: 1998-03-02 |
ISBN-10 |
: 0262631857 |
ISBN-13 |
: 9780262631853 |
Rating |
: 4/5 (57 Downloads) |
Synopsis An Introduction to Genetic Algorithms by : Melanie Mitchell
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Author |
: John R. Koza |
Publisher |
: MIT Press |
Total Pages |
: 856 |
Release |
: 1992 |
ISBN-10 |
: 0262111705 |
ISBN-13 |
: 9780262111706 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Genetic Programming by : John R. Koza
In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic programming may be more powerful than neural networks and other machine learning techniques, able to solve problems in a wider range of disciplines. In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic Programming contains a great many worked examples and includes a sample computer code that will allow readers to run their own programs.In getting computers to solve problems without being explicitly programmed, Koza stresses two points: that seemingly different problems from a variety of fields can be reformulated as problems of program induction, and that the recently developed genetic programming paradigm provides a way to search the space of possible computer programs for a highly fit individual computer program to solve the problems of program induction. Good programs are found by evolving them in a computer against a fitness measure instead of by sitting down and writing them.